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Àííîòàöèÿ. Â öèëèíäðè÷åñêîé îáëàñòè åâêëèäîâà ïðîñòðàíñòâà äëÿ ìíîãîìåðíîãî óðàâíåíèÿ Ýéëåðà �
Äàðáó -� Ïóàññîíà ðàññìàòðèâàþòñÿ ñïåêòðàëüíûå çàäà÷è Äèðèõëå è Ïóàíêàðå. Ðåøåíèå èùåòñÿ â âèäå
ðàçëîæåíèÿ ïî ìíîãîìåðíûì ñôåðè÷åñêèì ôóíêöèÿì. Äîêàçàíû òåîðåìû ñóùåñòâîâàíèÿ è åäèíñòâåííî-
ñòè êëàññè÷åñêîãî ðåøåíèÿ. Ïîëó÷åíû óñëîâèÿ îäíîçíà÷íîé ðàçðåøèìîñòè ïîñòàâëåííûõ çàäà÷, êîòîðûå
ñóùåñòâåííî çàâèñÿò îò âûñîòû öèëèíäðà.

Êëþ÷åâûå ñëîâà: êðèòåðèé, ñïåêòðàëüíûå çàäà÷è, ìíîãîìåðíîå óðàâíåíèå, öèëèíäðè÷åñêàÿ îáëàñòü,
ôóíêöèÿ Áåññåëÿ.

Äëÿ öèòèðîâàíèÿ: Àëäàøåâ Ñ. À. 2020. Êðèòåðèé îäíîçíà÷íîé ðàçðåøèìîñòè ñïåêòðàëüíûõ çàäà÷ Äè-

ðèõëå è Ïóàíêàðå äëÿ ìíîãîìåðíîãî óðàâíåíèÿ Ýéëåðà � Äàðáó � Ïóàññîíà. Ïðèêëàäíàÿ ìàòåìàòèêà &

Ôèçèêà. 52(2): 139�145. DOI 10.18413/2687-0959-2020-52-2-139-145.

1. Introduction Two-dimensional spectral problems for hyperbolic equations are extensively studied
(see for example [Kalmenov, 1993; Moiseev, 1988; Sabito, 2000; He K. Ch. 2000], and their multivariate
analogues are studied in [Aldashev, 2003; Aldashev, 2005; Aldashev, 2006; Aldashev, 2014]. This is because
three or more independent variables have di�culties of a fundamental nature. There is a highly attractive
and convenient method of singular integral equations. Applied for two-dimensional problems, it cannot be
used in virtue of absence of complete theory of multidimensional singular integral equations. The theory of
multidimensional spherical functions, by contrast, is quite fully studied. These functions have important
applications in mathematical physics, in theoretical physics, and in the theory of multidimensional singular
integral equations. The author proposes that in solving the spectral problems of Dirichle and Poincare
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for the multidimensional Euler-Darbu-Poisson equation, the decomposition by spherical functions should
be used.

2. Statement of the problem and result. Let Ωβ− be the cylindrical region of the Euclidean
space Em+1 points (x1, ..., xm, t), bounded by the cylinder Γ = {(x, t) : |x| = 1}, by the planes t = β > 0
and t = 0, of where |x| is a the length of the vector x = (x1, ..., xm). The parts of these surfaces that
form the boundary ∂Ωβ of the domain Ωβ , are denoted by Γβ , Sβ , S0 respectively. In the region Ωβ we
consider the multidimensional Euler-Darboux-Poisson equation with the spectral real parameter γ

∆xu− utt −
α

t
ut = γu, (1)

where ∆x is the Laplacian operator with respect to the variables x1, ..., xm, m ≥ 2, α− and a is a real
number.

By uα(x, t) we denote the solution of equation (1) for given α.
As multidimensional Dirichlet and Poincare problems, we consider the following problems.
Problem 1. Find a solution to equation (1) in the region Ωβ from the class C(Ωβ \ S0) ∩ C2(Ωβ),

satisfying the boundary conditions

uα

∣∣∣
S0

= 0, uα

∣∣∣
Γβ

= 0, uα
∣∣
Sβ

= 0, α < 1; (2)

uα
ln t

∣∣∣
S0

= 0, uα

∣∣∣
Γβ

= 0, uα
∣∣
Sβ

= 0, α = 1; (3)

(tα−1uα)
∣∣∣
S

= 0, uα

∣∣∣
Γβ

= 0, uα
∣∣
Sβ

= 0, α > 1. (4)

Problem 2. Find a solution to equation (1) in a domain Ωβ from the class C(Ωβ \ S0) ∩ C2(Ωβ),
satisfying the boundary conditions

∂uα
∂t

∣∣∣
S0

= 0, uα

∣∣∣
Γβ

= 0, uα
∣∣
Sβ

= 0, α ≥ 0; (5)

lim
t→0

tα(uα − uα,1) = 0, uα

∣∣∣
Γβ

= 0, uα
∣∣
Sβ

= 0, α < 0, (6)

where uα,1(x, t) is the solution of the Cauchy problem for equation (1) with data uα,1(x, 0) = τ(x),
∂
∂tuα,1(x, 0) = 0.

Further, it is convenient for us to move from the Cartesian coordinates x1, ..., xm, t to spherical
r, θ1, ..., θm−1, t, r ≥ 0, 0 ≤ θ1 < 2π, 0 ≤ θi ≤ π, i = 2, 3, ...,m− 1.

Let
{
Y kn,m(θ)

}
be a system of linearly independent spherical functions of order n, 1 ≤ k ≤ kn,

(m− 2)!n!kn = (n+m− 3)!(2n+m− 2), θ = (θ1, ..., θm−1).
Then the following result is valid.
Theorem. 1) If γ ≤ −µ2

s,n, then for all α problems 1 and 2 have only zero solutions.
2) If α ≤ 0 or α ≥ 2, then for γ > −µ2

s,n problem 1 has only a trivial solution, if and only if

sinβ
√
γ + µ2

s,n 6= 0, s = 1, 2, ... . (7)

3) For 0 < α < 2 and γ > −µ2
s,n problem 1 has only a zero solution if and only if, the condition

cosβ
√
γ + µ2

s,n 6= 0, s = 1, 2, . . . . (8)

4) The solution of Problem 2 for γ > −µ2
s,n for any α is only trivial if and only if relation (8) holds,

where µs,n are positive zeros of the Bessel functions of the �rst kind J
n+

(m−2)
2

(z).

We note that for α = 0 this theorem was obtained in [Aldashev,2010; Aldashev, 2011].

3. Information of tasks 1 and 2 to two-dimensional problems. In spherical coordinates, the
equation (1) has the form

urr +
m− 1

r
ur −

1

r2
δu− utt −

α

t
ut = γu, (9)

δ ≡ −
m−1∑
j=1

1

gj sinm−j−1 θj

∂

∂θj

(
sinm−j−1 ∂

∂θj

)
, g1 = 1, gj = (sin θ1... sin θj−1)2, j > 1.

It is well known [Mikhlin, 1962], that the spectrum of the operator δ consists of eigenvalues λn =
n(n+m− −2), n = 0, 1, ... , each of which corresponds to kn orthonormal eigenfunctions Y kn,m(θ).
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Since the desired solutions to problems 1 and 2 belong to the class C2(Ωβ), they can be sought in the
form of a series

uα(r, θ, t) =
∞∑
n=0

kn∑
k=1

ūkα,n(r, t)Y kn,m(θ), (10)

where ūkα,n(r, t) are functions to be determined.
Substituting (10) into (9), using the orthogonality of the spherical functions Y kn,m(θ) [Mikhlin, 1962],

we obtain

Lαū
k
α,n = ūkα,nrr +

m− 1

r
ūkα,nr − ūkα,ntt −

α

t
ūkα,nt −

λn
r2
ūkα,n − γūkα,n = 0, k = 1, kn, n = 0, 1, ...,

which, using the substitution ūkα,n(r, t) = r
(1−m)

2 ūkα,n(r, t) reduces to the equation

Lαu
k
α,n = ukα,nrr − ukα,ntt −

α

t
ukα,nt +

λ̄n
r2
ukα,n − γūkα,n = 0, k = 1, kn, n = 0, 1, ..., (11α)

λ̄n =
(m− 1)(3−m)− 4λn

4
.

Further, from the boundary conditions (2)�(6) for the functions ukα,n(r, t) by virtue of (9), we respectively
have

ukα,n(r, 0) = 0, ukα,n(1, t) = 0, ukα,n(r, β) = 0, α < 1, k = 1, kn, n = 0, 1, ..., (12)

ukα,n
ln t

∣∣∣
t=0

= 0, ukα,n(1, t) = 0, ukα,n(r, β) = 0, α = 1, k = 1, kn, n = 0, 1, ..., (13)

(tα−1ukα,n)
∣∣∣
t=0

= 0, ukα,n(1, t) = 0, ukα,n(r, β) = 0, α > 1, k = 1, kn, n = 0, 1, ..., (14)

∂ukα,n
∂t

∣∣∣
t=0

= 0, ukα,n(1, t) = 0, ukα,n(r, β) = 0, α ≥ 0, k = 1, kn, n = 0, 1, ..., (15)

lim
t→0

tα(ukα,n − uk,1α,n)t = 0, ukα,n(1, t) = 0, ukα,n(r, β) = 0, α < 0, k = 1, kn, n = 0, 1, . . . . (16)

In this way, problems 1 and 2 are reduced to two-dimensional spectral Dirichlet and Poincare problems
for equation (11α). The solution to these problems will be studied in sections 4 and 5.

Along with equation (11α) we consider the equation

L0u
k
0,n ≡ uk0,nrr − uk0,ntt +

λ̄n
r2
ūk0,n − γūk0,n = 0, (110)

which, using the change of variables ξ = r+t
2 , η = r−t

2 reduces to the equation

Muk0,n ≡ uk0,nξη +
λ̄n

(ξ + η)2
uk0,n = γūk0,n. (17)

Solution of the Cauchy problem for (17) with data'

uk0,n(ξ, ξ) = τkn(ξ),

(
∂uk0,n
∂ξ

−
∂uk0,n
∂η

)∣∣∣∣ξ=η = νkn(ξ), 0 ≤ ξ ≤ 1

2

has the form [Aldashev, 1991].

uk0,n(ξ, η) =
1

2
τkn(η)R(η, η; ξ, η) +

1

2
τkn(ξ)R(ξ, ξ; ξ, η) +

1√
2

ξ∫
η

[νkn(ξ1)R(ξ1, ξ1; ξ, η)−

−τkn(ξ1)
∂

∂N
R(ξ1, η1; ξ, η)|ξ1=η1

]dξ1 + γ
ξ∫
1
2

η∫
0

uk0,n(ξ1, η1)R(ξ1, η1; ξ, η)dξ1dη1,

(18)

where R(ξ1, η1; ξ, η) = Pµ[ (ξ1−η1)(ξ−η)+2(ξη+ξ1η1)
(ξ1+η1)(ξ+η) ] = Pµ(z) is the Riemann function for the equation

Muk0,n = 0 [Copson, 1958], Pµ(z) is the Legendre function, µ = n+ (m−3)
2 ,

∂

∂N

∣∣∣
ξ=η

=
1√
2

(
∂

∂ξ
− ∂

∂η

) ∣∣∣
ξ=η

.
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4. Functional relationship between solutions of the Cauchy problem for equations (11α)
and (110). First, we present some properties of the operator Lα, that are necessary for further studies.

10. If is a uα− solution of the equation Lαu = 0, then the function

u2−α = tα−1uα (19)

is a solution of the equation L2−αu = 0.
20. If uα is a solution of the equation Lαu = 0, then the function

1

t

∂uα
∂t

= uα+2 (20)

is a solution of the equation Lα+2u = 0.
30. The operator Lα has the property

Lαuα = t1−αL2−α(tα−1uα). (21)

These properties are established in the same way as they were proved ([Weinstein, 1954]) for the
equation

∆xu− utt −
α

t
ut = 0. (22)

From equality (19) we have u2−α−2p = tα+2p−1uα+2p to which, applying formula (20) p times, and
then (19), we obtain

u2−α =

(
1

t

∂

∂t

)p
(tα+2p−1uα+2p). (23)

Let p ≥ 0, q ≥ 0 be the smallest integers satisfying the inequalities α+2p ≥ m−1, 2−α+2q ≥ m−1.
Proposition 1. If uk,20,n(r, t) is a solution to the Cauchy problem for equation (110) ) satisfying the

condition

uk,20,n(r, 0) = 0,
∂

∂t
uk,20,n(r, 0) = νkn(r), (24)

then function

uk,2α,n(r, t) = γ−αt
−α

1∫
0

uk,20,n(r, ξt)ξ(1− ξ2)−
α
2−1dξ ≡ γ−αΓ

(
−α

2

)
D

α
2

0t2u
k,2
0,n(r, t), (25)

for α < 0 it will be a solution of the equation (11α), satisfying the condition

uk,2α,n(r, 0) = 0, lim
t→0

tα
∂

∂t
ur,2α,n = νkn(r). (26)

If 0 < α < 1, then the function

uk,2α,n(r, t) = γ2−k+2q

(
1

t

∂

∂t

)q [
t1−k+2q

1∫
0

uk,10,n(r, ξt)(1− ξ2)q−
α
2 dξ

]
≡

≡ γ2−α+2q2
q−1Γ(q1 − α

2 + 1)D
α
2−1

0t2

[
uk,10,n(r, t)

t

] (27)

is a solution of the equation (11α) with the initial data (26), where
√
πΓ(α2 )γα = 2Γ(α+1

2 ), Γ(z) is the
gamma function, Dα

0t is the Riemann-Liouville operator [Nakhushev, 2006], and u
k,1
0,n(r, t) is a solution of

equation (110) with the initial conditions

uk,10,n(r, 0) =
νkn(r)

(1− α)(3− α)...(2q + 1− α)
,
∂

∂t
uk,10,n(r, 0) = 0. (28′)

Proposition 2. If uk,10,n(r, t) is a solution to the Cauchy problem for equation (110) satisfying the
condition

uk,10,n(r, 0) = τkn(r),
∂

∂t
uk,10,n(r, 0) = 0, (28)

then function

uk,1α,n(r, t) = γα

1∫
0

uk,10,n(r, ξt)(1− ξ2)
α
2−1dξ ≡ 2−1γαΓ

(α
2

)
t1−αD

−α2
0t2

[
uk,10,n(r, t)

t

]
, (29)
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for α > 0 is a solution of equation (11α), satisfying condition (28).
Proposition 3. If uk,10,n(r, t) is a solution to the Cauchy problem for equation (110) satisfying condition

(28), then the function

uk,11,n(r, t) =

1∫
0

uk,10,n(r, ξt)(1− ξ2)−
1
2 ln[t(1− ξ2)]dξ (30)

is a solution to the problem for the equation L1u
k
1,n = 0 with initial data

uk,1l,n
ln t

∣∣∣
t=0

= τkn(r). (31)

The evidence for the above statements is established similarly how they were proved for equation (22)
and multidimensional wave equations ∆xu − utt = 0 [Aldashev, 1991; Aldashev,1976; Tersenov, 1973;
Tersenov, 1982].

We give some corollaries from Propositions 2, 3. We �rst consider the case α < 0, α 6= −(2r+ 1), r =

0, 1, . . . . If uk,10,n(r, t) is the solution of the Cauchy problem for (110) with data

uk,10,n(r, 0) =
τkn(r)

(α− 1)...(α+ 2p− 1)
,
∂

∂t
uk,10,n(r, 0) = 0, (32)

then it follows from statement 2 that

uk,1α+2p,n(r, t) = γα+2p

1∫
0

uk,10,n(r, ξt)(1− ξ2)
α
2 +p−1dξ

is a solution of the equation Lα+2pu = 0, satisfying the initial condition(32).
Then from relations (23) and (19) it follows that the function

uk,1α,n(r, t) = t1−α
(

1

t

∂

∂t

)p (
tα+2p−1uk,1α+2p,n

)
≡ γk+2p2

p−1Γ(α2 + p)t1−αD
−α2
0t2

[
uk,10,n(r, t)

t

]
(33)

is a solution to equation (11α) and satis�es condition (28).
Now let α = −(2r+ 1). If uk,10,n(r, t) is a solution to the Cauchy problem for (110) with data (28), then

it is easy to obtain from (19), (23) and from Proposition 3 that

uk,1−(2r+1),n(r, t) = t2(r+1)

(
1

t

∂

∂t

)r+1
 1∫

0

uk,10,n(r, ξt)(1− ξ2)−
1
2 ln(t(1− ξ2))dξ

 (34)

is a solution to the Cauchy problem for (11α), satisfying the condition (28).
Using [Nakhushev, 2000] the relation (34) can be written as

uk,1−(2r+1),n(r, t) =
a

2
t2(r+1)D

r+ 1
2

0t2

[
uk,10,n(r, t)

t

]
, a =

1

2
Γ′(1)−

Γ′( 1
2 )
√
π
− ln t. (35)

5. Proof of the theorem for problem 1. 1) Case α < 1. Given formulas (25) and (27), we reduce
problem (11α), (12) to the Dirichlet problem for (110) with data

uk,2α,n(r, 0) = 0, uk,2α,n(1, t) = 0, uk,2α,n(r, β) = 0, k = 1, kn, n = 0, 1, ..., (36)

for α ≤ 0 and to the Poincare problem for equation (110), with the condition

∂

∂t
uk,2α,n(r, 0) = 0, uk,2α,n(1, t) = 0, uk,2α,n(r, β) = 0, k = 1, kn, n = 0, 1, ..., (37)

for 0 < α < 1.
The following are shown in [9, 10]: 1) If γ ≤ −µ2

s,n then problems (110), (36) and (110), (37) have only
zero solutions; 2)For γ > −µ2

s,n problem (110), (36) has only a trivial solution if and only if the condition
(7) is satis�ed; 3)For γ > −µ2

s,n problem (110), (37) has only a zero solution if and only if relation (8)
holds.

Further, using Statements 1-3, we establish similar results for the problem (11α), (12).
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2) Case α = 1. The solution to problem (11α), (13)will be sought in the form

uk1,n(r, t) = uk,11,n(r, t) + uk,21,n(r, t), (38)

where uk,11,n(r, t) is solution of the equation (111), with data
uk,11,n

ln t

∣∣∣
t=0

= 0, and uk,21,n(r, t) is solution of the

Poincare problem for (111) with the condition

∂

∂t
uk,21,n(r, 0) = 0, uk,21,n(1, t) = −uk,11,n(1, t), uk,21,n(r, β) = −uk,11,n(r, β), k = 1, kn, n = 0, 1, ... . (39)

By virtue of (30), (18) of uk,11,n(r, t) ≡ 0. Further, using formula (29), we reduce problem (111), (39) to
the Poincare problem (110), (37).

Using formulas (21), (19) problem (11α), (14) is reduced to the case α < 1. studied.
Thus, it follows from (10) that Theorem 1 is valid for Problem 1.

6. Proof of Theorem 1 for Problem 2. Now we consider Problem 2, which is reduced to problems
(11α), (15)and (11α), (16).

If α ≥ 0, then it follows from (29) that problem (11α), (15) reduces to the Poincare problem for
equation (110) with data(37).

For α < 0, α 6= −(2r + 1), r = 0, 1, . . . we will look for a solution to problem (11α), (16) in the form
(38), where uk,2α,n(r, t) is a solution to the Cauchy problem for (11α) with the condition

uk,2α,n(r, 0) = 0, lim
t→0

tα
∂

∂t
uk,2α,n(r, t) = 0, (40)

and uk,1α,n(r, t) is solution of the Poincare problem for (11α) with condition (39).
Problem (11α), (40) by virtue of formula (25) reduces to the homogeneous Cauchy problem for (110)

with data uk,20,n(r, 0) = 0, ∂
∂tu

k,2
0,n(r, t) = 0, which has the trivial solution that follows from (18).

Problem (11α), (39) by virtue of (33) is reduced to Poincare problem (110), (37).
Further, let α = −(2r + 1). We look for a solution to problem (11α), (16) in the form (38), where

uk,2α,n(r, t) is the solution to the Cauchy problem (11α), (40), and uk,1α,n(r, t) is solution to the Poincare
problem for (11α) with the condition (39).

Since uk,2α,n(r, t) ≡ 0, as shown earlier, by virtue of (35) problem (11α), (39) reduces to the Poincare
problem (110), (37).

Therefore, the validity of theorem 1 follows from (10) and it is proved for problem 2.
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