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Abstract. In the cylindrical region of Euclidean space for the multi-dimensional Euler — Darbu — Poisson equation,
the spectral problems of Dirichle and Poincare are considered. The solution is sought in the form of decomposition
by multidimensional spherical functions. The theorem of existence and uniqueness of the classical solution has
been proved. Conditions of unique solvability of the assigned tasks are obtained, which depend significantly on
the height of the cylinder.
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Awunoranusi. B mummHaprdeckoit 06/1acTH €BKJINI0BA MPOCTPAHCTBA /I MHOTOMEDHOTO ypaBHEHUs Jiijiepa —
Hapby -— Ilyaccona paccmarpuBaiorcss criekTpasbubie 3amadn Jupuxite u [lyankape. Permenne wmercss B Buze
pasJiokenus 110 MHOroMmepHbiM chepudeckum byHKuusaM. JJoKa3aHbl T€OPEMbl CyIECTBOBAHUS U €IUHCTBEHHO-
CTHU KJIACCUYECKOTO perienvs. [1o/yueHbl yCaoBus OJHO3HAYHON Pa3pentnMOCTH MOCTABIEHHBIX 33/1a9, KOTOPHIE
CYIIECTBEHHO 3aBUCAT OT BBICOTHI IIUIUHIPA.

KirodeBble ciioBa: KpuTepwuil, CIEKTPAJIbHBIE 331a49¥, MHOTOMEDHOE ypaBHEHME, UINHIPUTIECKass 00/IacTh,

dyukma Beccemns.

Jas nurupoBanust: Anpawes C. A. 2020. Kpurepuit ogso3Ha49HON pa3pelinMocTu CleKTPaibHbIX 3a1a4 Ju-
puxsie un Ilyankape jisi MHOTOMEPHOTO ypaBHeHus Jiiepa — Japby — Ilyaccona. IIpuknagmas maremarnka &
Dusuka. 52(2): 139-145. DOI 10.18413/2687-0959-2020-52-2-139-145.

1. Introduction Two-dimensional spectral problems for hyperbolic equations are extensively studied
(see for example [Kalmenov, 1993; Moiseev, 1988; Sabito, 2000; He K. Ch. 2000], and their multivariate
analogues are studied in [Aldashev, 2003; Aldashev, 2005; Aldashev, 2006; Aldashev, 2014]. This is because
three or more independent variables have difficulties of a fundamental nature. There is a highly attractive
and convenient method of singular integral equations. Applied for two-dimensional problems, it cannot be
used in virtue of absence of complete theory of multidimensional singular integral equations. The theory of
multidimensional spherical functions, by contrast, is quite fully studied. These functions have important
applications in mathematical physics, in theoretical physics, and in the theory of multidimensional singular
integral equations. The author proposes that in solving the spectral problems of Dirichle and Poincare
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for the multidimensional Euler-Darbu-Poisson equation, the decomposition by spherical functions should
be used.

2. Statement of the problem and result. Let Q23— be the cylindrical region of the Euclidean
space Ey,11 points (1, ..., Tm,t), bounded by the cylinder T = {(z,¢) : |x| = 1}, by the planes t = 8 > 0
and ¢t = 0, of where |z| is a the length of the vector z = (z1,..., 2., ). The parts of these surfaces that
form the boundary 9 of the domain 23, are denoted by I'g, Sz, Sy respectively. In the region Qg we
consider the multidimensional Euler-Darboux-Poisson equation with the spectral real parameter ~

Amu — Ut — %ut =u, (1)

where A, is the Laplacian operator with respect to the variables x1, ..., z,,, m > 2, a— and a is a real
number.

By uq(z,t) we denote the solution of equation (1) for given a.

As multidimensional Dirichlet and Poincare problems, we consider the following problems.

Problem 1. Find a solution to equation (1) in the region g from the class C(25 \ Sp) N C?(p),
satisfying the boundary conditions

« :07 « _Oa « —07 < 17 2
e U , U ‘S e (2)
Uq
1 4 = o 07 « Oa = ]-a 3
Intls, T Ualg a (3)
(t* ugy) = 0, uq ") =0, u@|sﬁ =0, a>1. (4)

Problem 2. Find a solution to equation (1) in a domain Qg from the class C(Qg \ So) N C%(Qp),
satisfying the boundary conditions

Oug

e =0, o =0, uq =0,a20; 5

|, taf =0, talg, =0, a (5)
tlgr(l)t (ua_ua,l)zov Uy r, =0, ua‘sﬁ =0, a <0, (6)

where uq 1(z,t) is the solution of the Cauchy problem for equation (1) with data uq,1(z,0) = 7(z),
%ua,l(x, 0) =0.

Further, it is convenient for us to move from the Cartesian coordinates xi, ..., Z;,,t to spherical
701, O 1,t,7>0,0<60; <21, 0<60; <m,i=23,....,m—1.

Let {Y;¥ ()} be a system of linearly independent spherical functions of order n, 1 < k < ky,
(m—=2)nlk, = (n+m—=3)!2n+m—2), 0 =(01,...,0m—1).

Then the following result is valid.

Theorem. 1) If v < —,uin, then for all o problems 1 and 2 have only zero solutions.

2) If a <0 or a> 2, then for v > —,uin problem 1 has only a trivial solution, if and only if

sin 8y /vy +p2, #0,s=1,2,.... (7)

3) For0<a<2andy> —uin problem 1 has only a zero solution if and only if, the condition

cos By/y+ui, #0, s=1,2,.... (8)

4) The solution of Problem 2 for ~ > fug,n for any « is only trivial if and only if relation (8) holds,
where (15, are positive zeros of the Bessel functions of the first kind Jn+ m-2) (2).
2

We note that for & = 0 this theorem was obtained in [Aldashev,2010; Aldashev, 2011].

3. Information of tasks 1 and 2 to two-dimensional problems. In spherical coordinates, the

equation (1) has the form
m—1 1

e
— =0u —uy — —u = YU, 9
Ur = 50U = U — Ut = YU (9)

Uppr +

m— ] m—i_1 O ) ) .
0=-— Z Slnm J— 10 39 ( sin™™7 169j>791:17gj=(51n91...sm9j1)2,j>1_

It is well known [Mikhlin, 1962], that the spectrum of the operator § consists of eigenvalues A\, =
n(n+m— —2), n =0,1,..., each of which corresponds to kn orthonormal eigenfunctions Yim(e).
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Since the desired solutions to problems 1 and 2 belong to the class C?(23), they can be sought in the

form of a series
kn

Uu(r,0,1) = i ﬂ];’n(T, t)Y,ﬁm(H), (10)

where ¥ | (r,t) are functions to be determined.
Substltutlng (10) into (9), using the orthogonality of the spherical functions Y,ﬁm(e) [Mikhlin, 1962],
we obtain

K _ -k m—1_, —k —k An ko _ _
Loéua,n = Uy ppr T r Uqnr — Ug,ntt — t U, nt ﬁua,n — YUan = 07 k= 17 k”? n= 0’ 1’ )

s

which, using the substitution @ , (r,t) = P )ﬂﬁ (7, 1) reduces to the equation

Eoo_ ok E Xk An uk
Laua,n - ua,nrr _ua,ntt t ant +—= TQ an

—yuk =0, k=1k,n=0,1,.., (114)

v (m—=1)(3—m)—4\,
An = 1 .

Further, from the boundary conditions (2)—(6) for the functions uf, ,, (r, ) by virtue of (9), we respectively
have

upy o (r,0) =0, ul (1) =0,ul ,(r,8) =0, <1, k=1k,, n=0,1,.., (12)

é’t L, =0u EaLt)=0,uf (r,8)= =1, k=1,k,,n=0,1,..., (13)

(" tul ) =0 uf (L,t)=0,ul,(r,8) =0, 0>1,k=1k,, n=0,1,.., (14)
ouk X A

at’ = 0, uam(l,t) =0, uy,(r,8)=0,a>0,k=1,k,,n=0,1,..., (15)

}g%ta( Fw Ul ) =0, ub (1Lt)=0,ul (rnB)=0,a<0,k=1Fk, n=01,.... (16)

In this way, problems 1 and 2 are reduced to two-dimensional spectral Dirichlet and Poincare problems
for equation (11,,). The solution to these problems will be studied in sections 4 and 5.
Along with equation (11,) we consider the equation

An
k —,k k ~k -k  _
LOUO,n = uO,nrr u() ntt + U’O n Pyu(),n - 07 (110)

which, using the change of variables £ = £, n = "5 reduces to the equation

A, _
Mulg,n = ulg,nfn + mugm = ’yulg,n (17)

Solution of the Cauchy problem for (17) with data’

DO =

ouF ouF
ot =0, (O - e )|, - i@ 02

has the form [Aldashev, 1991].

1 1
FyHORESEN + 5

n
f U’O n 617 nl)R(Slu s 57 n)dgldnlu
0

A

lTr’f(n)R(mn;é,n) € R 36 m)

2

(51) R(&1,m1;56,m)|ey=n, dEL +y

ué,n(gv 77) =

d%m

(18)

[\J\»—‘Hm

where R(&1,m;&,m) = PM[(51 "1()£(f+;71))+(52_(f7;’)+51”1)] P,(z) is the Riemann function for the equation

Mug,, = 0 [Copson, 1958], P,(z) is the Legendre function, = n + w7

10 0
ol =5 (e a0 e
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4. Functional relationship between solutions of the Cauchy problem for equations (11,)
and (11y). First, we present some properties of the operator L, that are necessary for further studies.
19, If is a wo— solution of the equation Lou = 0, then the function

t* Ly, (19)

U2—a =

is a solution of the equation Ls_,u = 0.
20, If w,, is a solution of the equation L,u = 0, then the function

1 dug
20
t ot let? (20)
is a solution of the equation L,ou = 0.
39. The operator L, has the property
Lot =t Lo o (t* uy,). (21)

These properties are established in the same way as they were proved ([Weinstein, 1954]) for the
equation
Awu — Ut — %ut =0. (22)

From equality (19) we have us_q_2, = t*T*7 1y, o, to which, applying formula (20) p times, and
then (19), we obtain

1ON? oy
v = (35) € i) (23)

Let p>0,q>0be the smallest integers satisfying the inequalities a+2p > m—1, 2—a+2q > m—1.
Proposition 1. If uy’ n(r t) is a solution to the Cauchy problem for equation (11p) ) satisfying the
condition

W2 (,0) =0, Sl (r,0) = ), (24)
then function
1
_ _ o (0% o
B2 (r,t) = y_at /u 20, e)E(1 — €2)~ 8 1de = y_oT (—5) DE,ub?(r 1), (25)

0

for o < 0 it will be a solution of the equation (11,), satisfying the condition
u’C 2(r,0) =0, hm t“gur 2 = uF(r). (26)
=0 Ot "
If 0 < a < 1, then the function

19\1 _ - _a
WE2 (1 t) = 9o san () [tl [ g1 - ) ng] _

t ot o)
k1
(r,1)
= Y2—a42¢29 (g1 — )Doztz [Ont

a solution of the equation (11,) with the initial data (26), where /7T'($)7a = 2I'(251), I'(z) is the

gamma function, D, is the Riemann-Liouville operator [Nakhushev, 2006], and wu’ wL t) is a solution of
equation (11p) with the initial conditions

on(r:0) = ul D 0 =0 (o)
on 1-—a)3—a)..2¢+1—a) ot o )

Proposition 2. If ugjrll(r, t) is a solution to the Cauchy problem for equation (11g) satisfying the
condition

U r,0) = 7, Subir0) =0, (28)

then function

1 ko1
kL (o, /u (ret)(1— €8 lag = 27,1 (5) oDy d [“0’”?’ t)] , (29)
0
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for a > 0 is a solution of equation (11,,), satisfying condition (28).
Proposition 3. If u’&’i(r, t) is a solution to the Cauchy problem for equation (11y) satisfying condition
(28), then the function

1
dhh0) = [0 - €)H nle(1 - €)dg (30)
0
is a solution to the problem for the equation L1U17n = 0 with initial data
!
ln k

= . 31
=) (31)

The evidence for the above statements is established similarly how they were proved for equation (22)
and multidimensional wave equations A u — ug; = 0 [Aldashev, 1991; Aldashev,1976; Tersenov, 1973;
Tersenov, 1982].

We give some corollaries from Propositions 2, 3. We first consider the case o < 0, a # —(2r +1), r =

0,1,....If u’é }L(r t) is the solution of the Cauchy problem for (11y) with data
k
k,1 Tn (1) 0 k1
0 —uy’ 0)=0, 32
uO n(r ) (Oz—l)...(a—k?p—l)’ 8tu0,n(’ra ) ( )

then it follows from statement 2 that
1
k,1 k,1 g
ua+2p,n(rﬂ t) = Ya+2p / onn(T, gt)(l — 62) 3 tp 1d£
0

is a solution of the equation L,yopu = 0, satisfying the initial condition(32).
Then from relations (23) and (19) it follows that the function

(33)

k1 1o (10N (012 1,k 1 o ugn (r,t)
ua’,n(r? t) =1 E& (t P Ua+2p,n ) = 7k+2p2p F( +p)t D0t2 ’f

is a solution to equation (11,) and satisfies condition (28).
Now let « = —(2r+1). If ugji(r, t) is a solution to the Cauchy problem for (11y) with data (28), then
it is easy to obtain from (19), (23) and from Proposition 3 that

k1 _42(r+1) lé a k,1 o\ _1 9
Wy ) = 0 (S50 | [ ubiren - )7 nge(r - ) (34)

0

is a solution to the Cauchy problem for (11,), satisfying the condition (28).
Using [Nakhushev, 2000] the relation (34) can be written as

—Int. (35)

k1
rd | Ugln (1) 1 ING
uli’(12r+1),n(r’ t) 2t (r+1)DO;z l 0, . ] L a= 7F/(1) . (2)

5. Proof of the theorem for problem 1. 1) Case a < 1. Given formulas (25) and (27), we reduce
problem (11,), (12) to the Dirichlet problem for (11y) with data

ul? (r,0) =0, ul? (1,t) =0, ub2 (r,8) = 0, k = 1,k,, n =0, 1,.. (36)

for o < 0 and to the Poincare problem for equation (113), with the condition

%u“(r 0) =0, ul?(1,6) =0, ub2(r,8) =0,k =1,k,, n=0,1,.., (37)
for0<a<1.

The following are shown in [9,10]: 1) If v < —p2 ,, then problems (11¢), (36) and (11¢), (37) have only
zero solutions; 2)For y > —pu2, 5 problem (11p), (36) has only a trivial solution if and only if the condition
(7) is satlsﬁed 3)For v > —pu2,, problem (11y), (37) has only a zero solution if and only if relation (8)
holds.

Further, using Statements 1-3, we establish similar results for the problem (11,), (12).
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2) Case a = 1. The solution to problem (11,), (13)will be sought in the form

uf (rt) = Wi (rt) +uy o (), (38)

k,1
where ulfrll(r, t) is solution of the equation (11;), with data 11111: =0, and u’fz (r,t) is solution of the

Poincare problem for (11;) with the condition

9 k2

S, 0) =0, w7 (1,8) = =y (L), uyn(r, 6) = —uyp (r, f), b =T hn, n= 0,1, (39)

By virtue of (30), (18) of ulf}l(r, t) = 0. Further, using formula (29), we reduce problem (11;), (39) to
the Poincare problem (11p), (37).

Using formulas (21), (19) problem (11,), (14) is reduced to the case oo < 1. studied.

Thus, it follows from (10) that Theorem 1 is valid for Problem 1.

6. Proof of Theorem 1 for Problem 2. Now we consider Problem 2, which is reduced to problems
(114), (15)and (11,), (16).

If o > 0, then it follows from (29) that problem (11,), (15) reduces to the Poincare problem for
equation (11¢) with data(37).

For a <0, a# —(2r+1),r =0,1,... we will look for a solution to problem (11,), (16) in the form
(38), where uk 2 (r,t) is a solution to the Cauchy problem for (11,) with the condition

ulé %L(T 0) =0, hm to‘guk 2 2 (r,t) =0, (40)

ot
and uf1 (r,t) is solution of the Poincare problem for (11,) with condition (39).

Problem (11,), (40) by v1rtue of formula (25) reduces to the homogeneous Cauchy problem for (11¢)
with data ug i(r 0) =0, gt g’ 2(r,t) = 0, which has the trivial solution that follows from (18).

Problem ( o)y (39) by virtue of (33) is reduced to Poincare problem (11p), (37).

Further, let a = —(2r + 1). We look for a solution to problem (11,), (16) in the form (38), where
ul? (r,t) is the solution to the Cauchy problem (11,), (40), and uf:},(r,t) is solution to the Poincare
problem for (11,) with the condition (39).

Since u¥2 (r,t) = 0, as shown earlier, by virtue of (35) problem (11,), (39) reduces to the Poincare
problem (110) (37).

Therefore, the validity of theorem 1 follows from (10) and it is proved for problem 2.
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