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1. Introduction. In the following paper we consider initial-boundary value problems for two dimensional
Kawahara equation:

Uy — (Uxxxx + uyyyy)x + b(uxx + uyy)x + auy + (g(u))x = f(t; X, y), (1)

posed on a domain IT}. = (0, T) X X, where 3, = Ry x (0,L) = {(x,y) : x > 0,0 < y < L} is a half-strip of a given
width L and T > 0 is arbitrary for equation (1), with the initial condition:

u(0,x,y) =u(x,y), (xy) €3y @)
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and boundary conditions:
u(t,0,y) = ux(2,0,y) =0, (t,y) € Br=(0,T) % (0,L), (3)
and boundary conditions for (¢, x) € Q74+ = (0, T) X R, of one of the following two types:

a). u(t,x,0) = u(t,x, L) = uyy(t,x,0) = uyy(t,x,L) =0, @
b). uy(t,x,0) = uy(t,x,L) = uyyy(t,x,0) = uyy,,(t,x,L) = 0.
The assumptions on the function g(u) are specified later; a, b are arbitrary real constants. Results on global
existence are bases on estimates which are the analogues of the following conservation laws for the initial value
problem

//RZ u?dxdy = const, [/Rz(uix + uiy +bu? + bui — 29" (u))dxdy = const,

where

u
g = [ go)as.
0
The equation (1) is a two-dimensional version of the Kawahara equation:
Up — Ugxxxx T Dliyxx + Aty + uuy = 0.

Obtained in [10], it describes the propagation of long nonlinear waves in weakly dispersive media. Kawahara
equation (also known as fifth-order Korteweg—de Vries equation) is a modification of the well-known Korteweg-de
Vries equation (KdV):

Us + Uxxx + AUy + Uty =0,

which also has the two-dimensional form, so called Zakharov — Kuznetsov equation:
Up + Uyxx + Uxyy + AUy + uzux =0.

In this paper we establish global existence and uniqueness of solutions to initial-boundary value problems (1) - (4)
and large-time decay under small input data.

Through the years there was a wide variety of investigations dedicated to various aspects of the Kawahara
equation and some of its modifications. The initial value problem and initial-boundary value problems are
considered, for instance, in [5, 11, 1, 9]. However, two-dimensional modifications of Kawahara equation are
studied considerably less. Kawahara equation has a another two-dimensional modification known as Kawahara -
Zakharov — Kuznetsov:

Up — Uxxxxx + Uxxx + Uxyy + AUy + Ul = 0.

For the first time an initial-boundary value problem for this equation was considered in [12]. The author obtained
global existence, uniqueness of regular solutions and large-time decay for the small initial data. Those results
were extended for the three-dimensional case of the Kawahara equation in [13]. Recently, in [14] author studied
smoothness properties of solutions of a two-dimensional Kawahara equation.

Our methods are similar to those given in [3], where the author studied the initial-boundary value problems
for the Kawahara — Zakharov — Kuznetsov equation on a half-strip. Previously, the author also obtained similar
results for Zakharov — Kuznetsov equation in [6, 7, 8]. However, in our case we studied a different form of
two-dimensional Kawahara equation given by (1).

Introduce function spaces H * taking into account boundary conditions (4). For any multi-index v = (v1, v3),
let 8" = 8} a;z and ﬁf = Ly, for k > 1 the space ﬁf consists of functions ¢(x) such that 9"¢ € Ly, if vi +v2 < k
and in case (a)

aj'"zp|yzo = a_f;"(p|y=L =0, Vme[0,k/2),

and in case (b
® iyl =Pmlg| =0, Vme [0, (k-1)/2)
y  Ply=0 = % y=L ~ ] :

Now, let us give the definition of the admissible weight function.
Definition 1.1. The function y(x) is called admissible weight function if ¢ is an infinitely smooth positive
function on Ry, such that for each j € N andVx > 0

[y (x)| < c(j)Y(x).

T Xo+1 L
M T) = sup/ / / u*dydxdt. (5)
x0=0J0 X0 0
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14 Initial-boundary value problems for two dimensional Kawahara equation

We construct solutions to the considered problems in space kax) (I13.) for two cases for k = 0 (weak

solutions), k = 2 (strong solutions) and for admissible weight 1/(x), such that ¢/’ (x) are also admissible weight
functions, consisting of functions u(t, x, y), such that

ue Co([0, THH™) 0 Ly(o, T V™)),

Further, we denote X0 /() (IT7) as le/(x) (IT3). Introduce the notion of weak solutions to the considered
problems, define special function spaces of smooth functions. Let S S(3,) bea space of infinitely smooth on %,
function ¢(x, y) such that (1 + x)"|0%(x,y)| < c(n, @) for any n, multi-index a,(x,y) € %, and aim(p|y=0 =
ai,’"(p|y:L = 0 for case (a) and af/m+1<p|y 82’"+1(p| 4o, = 0 for case (b) for any m.

Definition 1.2. Let uy € Ly, f € L1(0,T; L2,+) The function u € Lo (0,T; Ly.) is called a weak solution of
problem (1) — (4), if for any ¢ € C°([0,T];S(X)), such that <p|t=T = (p\ = (pxx|x=0 = 0, the following
relation is satisfied:

x=0 Px |x:()

// (UQr — UPxxxxx = UPyyyyx T DUPxxx + DUQyyx + aupy + g(w)ox + fo)dtdxdy + /] uo¢z|t:0dxdy =0. (6)
I, b

Now let us introduce the main results. The first two theorems establish global existence and uniqueness of

weak and strong solutions respectably.
Theorem 1.1. Let yj € L;/fix), f e Li(0,T; Ll/'(x)) for certain admissible weight function (x), such that ' (x) is
also an admissible weight function. Let g € CI(R) and for certain constants p € [0,4) andc > 0

lg' ()| < clulP? VYueR, @

and if p > 1 the function  for certain constants n and ¢ > 0 satisfies an inequality Y(x) < c¢(1 + x)"¢y’(x). Then

there exists a weak solution to problem (1) - (4)u € wa) (I13.); moreover A* (uxx; T) + A* (uyy; T) < +o0. In addition,
if p < 3 in (7) and for certain positive cg

(W CPYPTH(x) 2 ¢p Va2 0, ®)

then this solution is unique in X]'//(x) (I15).

Remark 1.1. The exponential wezght¢(x) = e2%X Vo > 0 and the power weight /(x) = (1+x)%%* Va > }1(1+%),
p > 0, satisfy the hypothesis of the Theorem 1.1 (including uniqueness). If ug € Ly, f € L1(0,T; Ly ), there exists a
weak solution u € C,,([0,T]; Ly ), A* (txx) + A (1yy) < +o0.

Theorem 1.2. Let uy € ﬁf’l//(x), f € La(0, T;ﬁf’w(x)) for certain admissible weight function y/(x), such that
¥’ (x) is also an admissible weight function, uy(0,y) = uox(0,y) = 0. Let ¢ € C*(R) and verifies condition (8)
forp € [0,4). Then there exists a strong solution to problem (1) — (4)u € X1 V() (I13.); moreover A* (txxxx;T) +
At (uyyyys T) + At (txxyy; T') < +oo0. In addition, if for certain constantsq > 0 andc > 0

lg” ()| < clul! VueR, ©)
and for certain positive cy andr € (2,4]
Y (x) TEHE(x) 2 ¢ Vx 20, (10)

then this solution is unique in X2 /() (I1%.).

Remark 1.2. The exponential weight /(x) = e*** Ya > 0 and the power weight Y(x) = (1 + x)** Ya > 0,
satisfy the hypothesis of the Theorem 1.2 (including uniqueness). If uy € H2, up(0,y) = upx(0,y) = 0, f € Ly(0, T; H+)
there exists a weak solution u € C,, ([0, T];ﬁf), AT () + AT (Uyyyy) + A (Uxxyys T') < +o0.

Next, we introduce two theorems on large-time decay of weak and strong solutions.

Theorem 1.3. Let the function g € C'(R) satisfies inequality (7) for p € (0,3]. Then there exists Ly > 0, ap > 0

and €y > 0 such that for any L € (0,Lo], & € (0, ] and B = n*/(8L*), such that ifu, € L2+ , ||u0||L2+ <e,f=0,

the corresponding unique solution u(t,x,y) to problem (1) — (4) in the case a). from the space X,f) (H*T') YT >0
satisfies an inequality:
le™u(t,  )IE,, < e lle™ulZ,, Vt=o. (11)
Theorem 1.4. Let the function g € C*(R) satisfies inequality (7) for p € [1, 4] and inequality (9) forq=p — 1.
Then there exists Ly > 0, ag > 0 and €y > 0, such that for any L € (0, Lo], & € (0, a9] and p = n*/(8L*), such that if
Uy € e fora € (0, a0], |luollz,, < €0, uo(0,y) = uxo(O y) =0, f = 0 the corresponding unique solution u(t, x, y)
to problem (1) — (4) in the case a). from the space Xi;e (IT7),YT > 0 satisfies an inequality

lle* ult, -, ')Ilz < c(lluoll g erax, a, Pe Pt Vi zo. (12)

Tpuxnaonas mamemamuka & Pusuxa, 2023, mom 55, Ne 1

ISSN 2687-0959
Applied Mathematics & Physics, 2023, Volume 55, No 1



E. Martynov 15

2. Preparations. In this section we establish some preliminary results. First, introduce the following notations:
let 5(x) be a cutoff function, # is an infinitely smooth non-decreasing function on R such that r(x) = 0 for x < 0,
n(x) =1forx > 1, 5(x) +n(1 —x) = 1; let Sexp(2+) be a space of 1nf1n1te1y smooth functions ¢(x,y) on %,
such that e™ [0 ¢(x, y)| < c(n,v) for any n, multi-index v,(x,y) € 3, let Sexp(ZJr) be a subspace of Sexp(2+) s
consisting of functions, on the boundaries y = 0,y = L verifying the same conditions as in the definition of the
space S"exp (Z,). This space is dense in ﬁf

Further, we drop limits of integration in integrals with respect to x and y over the whole half-strip >, and and
with respect to x over the half-line R,. The following interpolating inequalities are very important for our next
steps.

Lemma 2.1. Let /1 (x),)2(x) be two admissible weight functions, q € 2, +00]

1

s=s0(0) =7 = 5

1/2

then for every function satisfying (|@xx| + |@yyl + l@¥,""(x) € Ly, (p¢21/2 (x) € Ly, (0,y) = 0, (x,0)py(x,0) =

@(x, L)@y (x,L) = 0, the following inequality holds:

oy Iy, < cll (gl + loyyl + ooy 212 llovelll >, (13)

where the constant ¢ depends on L, q and the properties of the functions ;; if, in addition, (p‘yzo =0or (p|y=L =0 then

this constant is uniform with respect to L. _

Proof. Without loss of generality, assume that ¢ is a smooth, decaying at +co function (for example ¢ € Sex(24)).
First, uniformly with respect to L we establish the following:

[ apwit i anay < e [[ 2 oy + o nanasy [ oPpudza (14)

In fact, boundary conditions on the function ¢ yield that

// (02 + g2y 2y = - // (xx + Pug)V 20y 2dxdy - / Vox (2902 dxdy.

Since ¥/; are admissible weight functions, we get

(03 + o), Pdxdy < N2( [[ (@ + 0} Wndxdy) (|| o%yrdxdy)'V?
I «Jf I

sel [ il axay [ gpuaran [ opadran
whence (14) follows.

Next, we use the following interpolating inequality from [1] in the case of the domain Q = X,

1fllee (@) < elllfexllzi @) + IfyyllLi@) + 1f L @), (15)
and apply it to the function f = ¢ g&l/ 2022 then
o 9 12, < /f 1@ el + 102929 gy + 0%,y dxedy. (16)

Here,
092 P)ex = 2(00x + 020200 + 400 (0202 + 02 (91297

] ooty axay < [ otnaxan?> [[ gypedzany

and since i; are admissible weight functions

// loox (V720112 |dxdy < c(// o2 ”zdxdy)l/z(//q) Jrdedy)'

([ #vexan
[/‘P |y 9y"?) dxdy < c//¢2¢11/2¢21/2 < c(// o2 indxdy)?
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16 Initial-boundary value problems for two dimensional Kawahara equation

([ #tvuxap

Other terms in the right-hand side of (16) are estimated in a similar way and with the use of (14) inequality (13) in
the case g = +oo follows.
If q € (2,400), then with the use of the (14) for g = +co

-s o LR L2 -2 2
lovsvn* ., = ( // 01972, " 0, oPadxdy) T < oy, TP gy,

< cll(lgxxl + oyl + 1Dy * 12 oy, 1112,

Finlay, if, for instance, (p|y:L = <p|y=0 = 0, extend the function ¢ by zero to the quarter—plate Ry X R and carry

out the same argument with the use of (15) for Q = R, X R, and (14) for L = +oo, then estimate (13) becomes
uniform with respect to L.0

Further we also use an interpolating inequality, following from the one in [4].

Lemma 2.2. Let /1 (x), 2 (x) be two admissible weight functions, such that y; (x) < cof2(x), Vx > 0 for certain
constant ¢y > 0, q € [2,+00)

1 1
= = - — _’ 17
s =s1(q) 2 2 (17)

then there exists a constant ¢ > 0, such that for any function ¢(x,y) verifying (pxxt/lll/z (x), wyylﬁlm (%) € Ly(Z4),
(pl//zl/2 (x) € La(Z4), if |[v| = 1 the following inequality holds:

1/2— 1/2 1/211- 1/2
180955 " L, < cll (sl + loygD¥n 213 X oy, 152 + clloy 1, (18)

We use next two lemmas from [3].

Lemma 2.3. Let {/(x) be an admissible weight function, then there exists a constant ¢ depending on the properties

of the function y/, such that for any function ¢(x,y) verifying @xx, ¢ € lep,frx) the following inequalities hold:

// pydxdy < c| // oidxdy]| // oPydxdy] ' + // Hdxdy, (19)
/0 L<p§|x=odxdy <¢f // ot dxdy]| // otydxdy] ' + ¢ // otydxdy. (20)

Introduce anisotropic Sobolev spaces with smoothness properties only with respect to x. Let ka’o) be a
space of functions ¢(x,y) € Ly, such that &.¢ € Ly, for j < k endowed with the natural norm ||| pko =

(Z?:o ||8,J;<p||22+)1/2. Let Hf_m’o) = {p(xy) = X9j(xy) : Vo; € Ly,}, endowed with the natural norm
”(p”Hi’”‘"’) = (X7 ||fﬂj||iz»+)l/2~
k+1p€el, .

Lemma 2.4. Ifp € H+(k’0), oty € Hi_m’o) forn > k+m, oy and for certain constant ¢ = c(k, m, n)
105l < cClofplymo + ol ko)- (21)

For the large-time decay results we need the Steklov inequality in the following form:

L 2 L
/ Plydy < = / (F (W) dy. (22)
0 e Jo

where f € Hj(0,L).

Let ¥;(y), I € N, be the orthonormal in L,(0, L) system of the eigenfunctions for the operator (—¢’’) on the
segment [0, L] with corresponding boundary conditions (0) = /(L) = 0 in the case (a) and ¥/’ (0) = ¢'(L) = 0 in
the case (b), A; be the corresponding eigenvalues. Such systems are well known and can be written in trigonometric
functions.

Besides equation (1) we consider a linear equation:

Up — (Useexx + uyyyy)x +b(uxx + uyy)x +auy, = f(t,x,y), (23)

with initial and boundary conditions (2) - (4). Weak solutions to this problem are understood similarly to Definition
1.2.
Lemma 2.5. Let tg € Sexp(Z+), f € C¥([0,T]; Sexp(Z4)) - Set Bo(x, y) = uo(x,y) and for j > 1

®; = 9] £(0.x,y) + (3} + 9,9} — ba — baxd’, — ad) By (x,Y), (24)
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and let Ej(o, y) = ij(o, y) = 0 for any j.Then there exists a unique solution to problem (23), (2) — (4) u €
Cm( [O, T] 5 Sexp (Z+)).

Proof. Consider the corresponding initial value problem. Let ¥ = R x (0, L) and S(Z)) be a space of infinitely
smooth on ¥ functions ¢(x, y) such that (1 + |x|)"*|0%¢(x,y)| < c(n, @) for any n, multi-index a, (x,y) € 3 and
on the boundaries y = 0, y = L verifying the same conditions as in the definition if the space S(3,). Extend the
functions uy and f to the whole strip such that uy € S, f e C([0,T]; S(Z)) and consider problem (23) (in
I = (0,T) X %), (2) (in X), (4) (in Q1 = (0, T) X R). Then with the use of the Fourier transform for the variable x
and the Fourier series for the variable y a solution to problem (23), (2) — (4) can be written as the following:

u(tixy) = 3 [ et & e
I=1

where ;
ﬁ(t, f, l) — UAO(f, l)ei(§5+§/1?+h§3+b§/ll—a§)t + / f(T, §> l)ei(§5+§/1?+b§3+b§)kl—a§)(Z—T)dT’
’ ’ 0

(&) = //Z ¢y (y)uo (x, y) dxedy, (25)
fen = //2 e 5y () £ (1, x, y)dxdy.

According to the properties of the uy and f this solution u € C*([0,T]; S(2)).
Next, letv = a"al u for some k, I. Then the function v satisfies an equation of (23) type, where f is replaced

by ko yf - Letm > 5 ¥(x) = x™ (note that this function is not an admissible weight function). Multiplying this
equatlon by 2v(t, x, y){/(x) and integrating over ., we get

% / v*dxdy + ‘//(5032“ + vzy)t//dxdy + b/ (302 + vi)w’dxdy

_ // 502y dxdy + // (= 4 by + ay yoldxdy +2 // 33l foydxdy,

1
//vitﬁ’dxdyz—'//Uxxvgb'dxdy+E[/vzzﬁ"'dxdy,
[ siwnds == [[ opuovraas
'//v,zclﬁ"'dxdyz—[/vxxmﬂ"'dxdy—//Ux0¢(4)dxdy.

Note, that " < 6y"y(5) , y* < /2y (5).

From the equality above we get

2.1 2 1 9b2 2.1 3b 21011
-3b vy dxdy < Ve ¥ dxdy + e oY dxdy + > v“Y"" dxdy,
2 2 b? 2
—b[/vylﬁ'dxdy < ﬂvyyw'dxdy+zﬂv V' dxdy,
[/viw”/dxdys [/vixw/dxdy+8'//02¢(5)dxdy.
Equally (26) yields

% / o*ydxdy < c(a,b) // WS + ¢+ )oldxdy + 2 // 9, foydxdy. (27)

Fix @ > 0 and let n > 5. For any m € [5, n] multiplying the corresponding inequality (27) by (2a)™/(m!) and

summing by m we obtain that for
(2
Zn = E ~————0%(t, x, y)dxdy,

due to the special choice of the function ¥/, inequalities

(26)

where

Z,(t) < czp(t) +¢, z,(0) < ¢,
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18 Initial-boundary value problems for two dimensional Kawahara equation

hold uniformly with respect to n, whence it follows that

sup //eZ“xUdedy < oo,
te[0,T]

Thus, u € C*([0,T]; gexp (Z4)). We will use the following notation w(t, x, y) for the constructed solution of the
initial value problem.

Let po(t,y) = —w(,0,y), p1(t,y) = —w«(t,0,y). Note that the functions y; € C* (Br) and satisfy boundary
conditions (4), and the compatibility conditions from the hypothesis of the lemma ensure that d! i(0,y) =0, VL
Consider in IT}. an initial-boundary value problem:

Up — (Uxxxx + uyyyy)x + bty + uyy)x +auy, =0, (28)

ul,y = 0,1y = po(t,y), u| o = p (L), (29)

with boundary conditions (4).

Let T(t: X, y) = :UO(t’ y)’?(l—x)+l11 (t’ y)xU(l—x), F(t, X, y) = _\Pt"'(q/xxxx"'qjyyyy)x_b(l{jxx"'\Pyy)x_a\yx =0,
U(t,x,y) = u(t,x,y) — ¥(t,x,y), then the problem (28), (29), (4) is equivalent to problem (23), (2) - (4) for the
function U, uyy = 0, f = F. It is obvious, that F € C*([0, T];Svexp(ir)) and 8£F(0, x,y) =0, VL.

Apply the Galerkin method. Let {¢;(x) : j = 1,2,3...} be a set of linearly independent functions complete
in the space {¢p € H*(R;) : ¢(0) = ¢’(0) = 0}. Seek an approximate solution of the last problem in the form

U(t,x,y) = Zf,l:l ckji(t)ej(x)¥i(y) via conditions:
/ (Ukt - (kaxxx + Ukyyyy)x + b(kax + Ukyy)x + aka)Wi(x)I//m(y)dXdy

(30)
—//F¢i¢mdxdy =0, im=1..,k te[0,T] ckju(0)=0.

Multiplying (30) by 2ckin, (t) and summing with respect to i, m, we find that

d L
E‘//U,fdxdy+/o U,fxx|x:0dy=2//FdeXdy, (31)

Ukl o 01:L20) < IFllL, 0,750 ) (32)

thus

Multiplying (30) by c;, (0), putting t = 0 and summing with respect to i, m, we obtain that Ukt| +—o - Then
differentiating (30) with respect to ¢, multiplying by 2c;, (t) and summing with respect to i, m, we find (similar to
(32)) that

Uikl o1iLs0) < WIFILy(0.7:Ls0) - (33)
Since gb,(nzn) (y) = (=Am)"¥m(y) it follows from (30) that for any n and [ similary to (32) and (33)

10405Vl 07:200) < 10 ORFIILy (0.TiL) - (34)

Estimate (34) provides existence of a weak solution U(t, x,y) to the considered problem such that afa’;U €

C([0,T];Ly+), for all I, n in the sense of the corresponding integral equality of the corresponding integral equality

of (6) type for g = 0, f = F, up = 0. Note, that the traces of the function U satisfy conditions (2) for up = 0 and (4).
It follows from the corresponding equality of (6) type that since

Uxxxxx = Ut - Uyyyyx + b(Uxx + Uyy)x + aUx - F, (35)

aﬁa;Uxxxxx e C([o0,TY; H+(_3’0)) VI, n therefore, the application of inequality (21) (for ¢ = aﬁa;U, k =0,m = 3)yields
that 3£aZUx € C([0,T]; Ly+), Vi, n then the application twice of (35) and (21) (fork =1,m=2andk =2,m = 1)
yields that aﬁagUxxx € C([0,T];Lz+), VI, n. And again from (35) follows that aﬁa;Uxxxxx € C([0,T];L2+), Vi, n, the
function U satisfies (23) in IT}. and its traces satisfy (2). For any natural m differentiating corresponding equation
(23) 5(m — 1) times and using induction with respect to m, we derive that aﬁa;’"agU € C([0,TT; La+)-

As a result, the solution to the problem (28), (29), (4) is constructed such that afa;”agu € C([0,T];L2+), VI, m, n.
From now on in the proof we use notation v(t, x, y) for this solution.

The function u(t, x, y) + v(t, x,y) is the solution to problem (23), (2) - (4) such that 658;"8’;14 € C([0,T]; L2.+),
VI, m,n. Let u(t, x, y)n(x — 1). The function u solves an initial value problem in the strip 3 of (23), (2), (4) type,
where the functions f, u, are substituted by corresponding functions f, Uy from the same classes and the obtained

result at the beginning of the proof for the initial value problem together with the obvious uniqueness provide
that u € C*([0,T]; Sexp(2+)) and so u € C*([0,T]; Sexp(Z4)).0
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Lemma 2.6. A generalized solution to problem (23), (2) - (4) is unique in the space Ly(IT}).
Proof. This lemma is a corollary of the following result on existence of smooth solutions to the corresponding
adjoint problem. O

In IT}. consider an initial-boundary value problem for an equation:

Uy + (Uyxxx + uyyyy)x = b(uxx + uyy)x —auy = f(t,x,y), (36)

with initial condition (2), boundary conditions: (4) and boundary conditions
u|x:0 = ux|x:0 = uxxlx:O =0. (37)

Lemma 2.7. Let ug € S(3,), fec>(o, T;S(,)) and 5]-(0, y) = 5jx(0, y) = 0 for any j, where here in the
definition of the corresponding functions <I~>j in comparison with (24) the sign before the second term in the right-hand
side is changed. Then there exists a unique solution to problem (36), (2), (37), (4), u € C* (][0, T];S(.)).

Proof. Extend the functions uy and f to the whole strip and consider problem (36), (2), (4), construct its solution
w € C®([0,T];S(Z,)) in a similar way with the only obvious difference in (25).

Let po(t,y) = —w(t,0,1), 1 = —wx(t,0,1), 2 = —wxx (1,0, y). Note that the functions y; € C* (ET) and satisfy
boundary conditions (4). Moreover,the compatibility conditions form the hypothesis of the lemma ensure that
i (0,y) =0,V In IT7. Consider an initial-boundary value problem:

s + (Usxxx + uyyyy)x = b(uxx + uyy)x —auy =0, (38)

U],y = 0.u| Ly = po(ty), ] g = (), th] = pr2(t,), (39)

and with boundary conditions (4).

Let Y(t,x,y) = po(t,y)n(1 — x) + 1 (£, y)xn(1 — x) + w2 (£, y)x*n(1 — x) /2, F(t, %, y) = —FPrxxx — Pyxxxy +
bWrxx + bWy yy +a¥ — ¥, U(t, x,y) = u(t, x,y) — ¥(t,x,y), then problem (38), (39), (4) is equivalent to problem
(36), (2), (37), (4) for the function U, uy = 0, f = F. Obviously F € C*(]0, T];S(=,)) and aﬁF(o, x,y) =0,V

Let {¢;(x) : j = 1,2,3, ...} be the same set of functions as in the proof of Lemma 2.5. Seek an approximate

solution in the form Uy (t, x,y) = 25,1:1 ckji(t)ej(x)¥i(y) via conditions:

[ wWikoitm = 0ot + 041~ b0y = b3 = apin ]y
(40)

—[/F(pixﬁmdxdy =0,iim=123,..,kte[0,T],

ckj1(0) = 0. Multiplying (40) by 2ck;, (¢) and summing with respect to i, m, we derive equality (31), which implies
estimate (32). Similarly we get (34), which provide existence of a weak solution U (¢, x, y) to the considered problem
such that 3£aZU € C([0,T];L2+), VI, n > 0 in the following sense: for any function ¢ € Lo (0, T; ij), such that ¢,

Prxxxxr Pyyyyx € Loo(0,T5 Lo ), ¢|t:T = ¢|x:0 = qﬁxlx:O = 0 the following equality is satisfied:

/-//II+ [U(gbt + (¢xxxx + ¢yyyy)x - b(¢xx + Qbyy)x - af/JJX) + F¢]dxdydt =0.

Then also similarly to the proof of Lemma 2.5 we obtain a solution to problem (38), (39), (4) v such that
9,0m%uC ([0, T]; Lyy), VI, m, n.

Similar to Lemma 2.5 we show that the function u = w + v is the desired solution. O

Remark 2.1. In further lemmas of this section we first consider smooth solutions constructed in Lemma 2.5 and
then pass to the limit on the basis of obtained estimates.

Lemma 2.8. Let /(x) be admissible weight function, such that y’(x) is also an admissible weight function,

/ ' (5)) -1/
Uy € Ll/’(x) f = fo+ fix, where fy € L1(0,T; L;/fix)),fl € Lyy3(0, T;leliz(x)w @)™ 2). Then there exist a unique weak

2+

solution to problem (23), (2) - (4) form the space XV*) (IT3.) and a function yi; € Ly(Br) such that for any function
¢ € Lo (0, T; HY), 1, Prxcxxrs Pyyyyx € Leo(0,T; Ly 4) g{)\t:T = ¢|x=0 = ¢x|x=0 = 0 the following equality holds:

ﬂ]* (us — UPxxxxx — UPyyyyx + DUrxx + DUy + audy + fod — figx)dtdxdy

+ // uo|,_,dxdy — // HaPsx| _,dydt = 0.
p Bt

lullxsco oy + Np2llz.s,) < e(T), (42)

(41)

Moreover, for a.e.t € (0;T]
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20 Initial-boundary value problems for two dimensional Kawahara equation

and fora.e.t € (0;T]

d L
T [/ u?yrdxdy + (0) / /1§|x:0dy + // [5u2, + uiy +3bu? + buz — au®y/ dxdy
0

(43)
- // [5u? + bu?]y® dxdy + // u?y S dxdy = 2 // foupdxdy — // 21 (wy)dxdy,

if fi =0, then in equality (43) one can put = 1.

Proof. Multiplying (23) by 2u(x,y,t)y(x) and integrating over %, thus we obtain (43) with pp = uxx| -

According to (20) for arbitrary ¢ > 0

I//fl(wﬁ)xdxdyl < ellCful + ) @)Y e, AV @) T,
< o1 [t +wyg DG g 212+ g e, J1AY A ),

(44)

< 5//(“;2“+u;y)lﬁ/dxdy+c(f)”fl||i{;3/2<x>(¢'<x)rl/2([/ updxdy)'/
2,+
seallFll st e /f wAydxdy)'?,
2,4+

and according to (19)

[ e wnasay <o [[ i axayscto) [[wtyasay (45)
[/uix//dxdyz—"//uuyyt//dxdy < Eﬂuzyytﬁ’dxdy+c(€)‘//u2¢dxdy. (46)

It follows from (43) - (45), that for smooth solutions

Moreover,

llullxveo ) + et ol (Br) < €. (47)

The end of the proof is standard. O
Lemma 2.9. Let /(x) be admissible weight function, such that ' (x) is also an admissible weight function,

Uy € ﬁf’l//(x), up(0,y) = upx(0,y) =0, f = fo + fi, where fy € ﬁf’w(x), fi € L(0, T; L;ﬁ(x)/‘//(x)). Then there exist a
strong solution u € X*¥¥)(1IT) to problem (23), (2) - (4) and a function 4 € Ly(Br) such that for anyt € (0,T)

lullxepeo ey + lpallz, ) < C(T)(Huo”ﬁf,lﬁ(x) + Aol g v + ||fl||L2(O’t;Lgf<x)/¢'<x)))’

and fora.e.t € (0,T)

% '//(uix +uy, + bl + bul)ydxdy + / (U2 eV + e Unx ¥ + 2Unrnxtoex = 2bUnrrxtiex
—3Ul V" = 2Uyrtir V) + AbUsrr i) + u,z(xtﬁ(“) —abu’ Y + (b* + a)uixt//)|x:0dy
+/ (Ul + 6UL gy + 8bU o+ 6bUE, 1l +4bul, + 20Ul +
+(3b* — a)ui, + 4b2uiy — abu® + (b* - a)uf/y)(ﬁ'dxdy

+/ (—5u®, — 6bu’, — Suiyy - buzy — b*ut — 5bu,zcy - bzuz)lﬁ"’dxdy

48
+ // (ul, +ul, +bul + bul)yDdxdy ()
=2 [ Ghoston + fuuttyy + vt + bt edxdy
2 [ (o = St o
2 [/ L+ g = st = by $ 1y,
if fi = 0 then in equality (48) one can put /(x) = 1.
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Proof. Multiplying (23) by 2(txxp(x))xx + 2Uyyyyp(x) — 2b(uxp(x))x — 2buyyp(x) where either p = /(x) or
p(x) = 1 and integrating over X, we get equality (48) for iy = Uyxxx|x=0, Where ¢ is substituted by p. Here
according to (20) for an arbitrary ¢ > 0

L
/ | _dy<e /f 2 o)/ dxdy + (o) // o2 ydxdy, (49)
0

similarly to (45) and (46)

"//(uixx + u;yy + uf(yy + uixy)t//dxdy <e¢ //(uixxx + uzyyy + uixyy)tﬁ’dxdy +c(e) [/(uix + uiy)lﬁdxdy, (50)

and

| ‘//fl [(Uxx)xx + Uyyyy¥ldxdy| < fff(uixxx + uiyyy +ul )Y dxdy +c(e) ”//flzlﬁz(zﬁ’)_ldxdy. (51)

Inequalities (47), (49) — (51) and equality (48) imply that for smooth solutions
llullxzweo sy + x| oo (Br) < C(T)(||uo||gfx//<x) + ol o pmzveo) + ”fl||Lz(o,t;L;/ff(x”W">))' (52)

O
Lemma 2.10. Let the hypothesis of Lemma 2.9 be satisfied for /(x) = e2** for certaina > 0. Letg € C*(R), g(0) =
0. Consider the strong solution u € X>V*) (I13.) to problem (23), (2) - (4). Then for a.e.t € (0,T)

d . ,
g

ﬂg(”)(”xxxx = bt + uyyyy — buyy)p'dxdy —a [/g*(u)p’dxdy = //g(u)deXdy-

where either p(x) = 1 or p(x) is an admissible weight function such that p(x) < cy(x) Vx > 0.
Proof. In the smooth case equality (53) is obtained via multiplication of (23) by g(u(t, x,y))p(x) and subsequent
integration and in the general case via closure, which here is easily justified since X>¥*) (IT}) € Lo (IT}) and
y~y.0

3. Existence of solutions. The following is the appropriate text. In this section we proof of the existence of
the solutions in the first two theorems.

Lemma 3.1. Let g € CY(R), g(0) = 0. |¢'(w)| < ¢ Yu € R. ¥(x) = €*** for certain a > 0, uy € L

f e Ly(o, T;L;/fix)). Then problem (1) — (4) has a unique weak solution u € X¥*) (I1%.).
Proof . We apply the contraction principle. For t, € (0,T] define a mapping A on X¥*) (I1%) as follows:

(53)

¥ (x)

2+

u=AveXV® (IT;) is a weak solution to a linear problem:

U — (Uxxx + uyyyy)x + b(uxx + uyy)x +auy = f(ta X, y) - (9(0))x,

in IT; and boundary conditions (2) - (4).
Note that /3/2(") "2 < ¢y, |g(v)| < c|o| thus, Lemma 3.1 provides that the mapping A exists. Moreover, for
functions 0,7 € X¥®) (I1})) according to inequality (42)

3/4
A0 llxpeo iy ) < C(T)(||u0||L;/jiX) + ||f||L1(0)T;L;/'/+(x>) + 13" loll v 1)) 59
3/4 ~
180 = AB o0 1y < (T8 lo = Bl v s -
ty to

whence first the local result succeeds. Next, since the constant in the right-hand side in the above inequalities is
uniform with respect to uy and f, one can extend the solution to the whole time segment [0, T] by the standard
argument.0l

Proof of Existence Part of Theorem 1.1. For h € (0; 1] consider a set of initial-boundary value problems:

U = (Uxxx + Uyyyy)x + b(thxx + Uyy)x + atix + g5 (W ux = f(1,x,7), (55)

with an initial condition:
ul,_y = ton (%), (56)

with boundary conditions (3) and (4), where
ot xy) = f(tx,y)n(1/h—x),  uon(x,y) = uo(x)n(1/h - x),
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22 Initial-boundary value problems for two dimensional Kawahara equation

9,(w) =g (wn(2 = hlul), gn(u) = /O 9,(0)db.

Note, that g (u) = g(u) if [u| < 1/h, g} (u) = 0if [u| > 2/h, |g, (w)| < c(h) Yu and the function g, satisfy inequality
(7) uniformly with respect to h.

Lemma 3.1 implies that there exists a unique solution to this problem u, € X et (I13.) for any a > 0.

Next, establish appropriate estimates for functions uy, uniform with respect to h (we drop the subscript 4 in
intermediate steps for simplicity). First, note that ¢’ (u)u, € L;(0, T; LZ J(rx)) and so the hypothesis of Lemma 3.1 is
satisfied (for fi = f, = 0). Then equality (43) provides that for both for p(x) = 1 and p(x) = ¢:

d L
o // u® pdxdy + p(0) /0 ,u§|x:0dy + //[Suix + uzy +3bu’ + buz — au®]p’dxdy

57
- ‘//[SMJZC +bu?]p® dxdy + ‘// u?p®dxdy = 2 //fupdxdy + / (9’ (wu)*p'dxdy. 7

Choosing p = 1 with respect to h and to L we get
lurlleor);r,.) < c. (58)

Let p = ¢. Note that uniformly with respect to h
(g5 (wu)*| < clul?*?. (59)

2(1-gs)
Letq=p+2,s = so(q) from (17), Y (x) = ¢/ (x), Ya(x) = (¥ (x)) 95 (gs = p/4 < 1). Applying (18), we obtain
that
// [ulP**y) dxdy = / |u|P+2 fslﬁg(l/z_s)dxdy

< C(//(uix + u;y +u?) Y dxdy) ™ ( // uZI/,dedy)q(l/Z—s)
2(1-gs)  2(q-2) B
= C( /‘/(uf{x + uzy + uz)wldxdy)qs(‘/ (u2¢l) q(l—gs) uq(?—zs) dxdy)q(l/Z s)

< ¢ // (2, + 12, + u?)grdxdy)?" // uy dxdy) P // utdxdy)?’?.

Since the norm of the functions uy, in the space L, ; is already estimated in (58) it follows from (57), (59) and (60),
that uniformly with respect to h

(60)

llunll v oo (Im%) <ec. (61)

Write the analogue of (55) where p is substituted by po(x — x¢) for any x, > 0 Then it easily follows (5), that
A (s T) + AT (upyy) < c. (62)

Let 2, = (0,n) x (0,L). It follows from (62) and interpolating inequality from [1] (where Q, = (n,n+ 1) X (0,L)):

1fllLeon < C(L)(//Q (fex + fyy +f2)dxdy)1/4(//Q frdxdy)'/?,

that uniformly with respect to h
lunllL 1L <
and
98 (un)llL,, 0.1:L.(20)) < €

Then from equation (1) itself it follows, that uniformly with respect to h

lunellz, om:H-5(5,)) < € (63)

Since the embedding H'(Z,) C Ly(Z,) is compact, it follows from [15] that the set u, is relatively compact in
Lg(0,T; Ly (3,)) for g < +oo.
Extract a sub-sequence of the functions uy, again denoted as uy, such that as h — +0
¥ (x)
Ly, )

up — u *-weakly in Lo (0, T; L, |

Uhxx> Uhyy — Usx, Uyy weakly in L, (0, T; L]Z/f;(x));
up — u strongly in Lmtzc(z,4/(4—p))(0> T;L,(X2,)) Vn.

Let ¢ is a test function from Definition 1.2 with supp¢ € %,,. Then, since
|gn(un) = gn ()] < cunl? + [ul”) [up — ul,
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with the use of (63), we obtain, that the limit function u verifies (6).
Now, note that g(u)¢x € Leo(0, T;L14) if p < 1.Incasep > 1

T
lg (@)l < /0 g 2L [ gl )PPy vy

T
SC1/ [(//(uazcx+uf/y+u2)¢'dxdy)p/4(‘/‘/uzl//dxdy)(p+2)/4 (64)
0
(JJ S om0 sy 2 <

since (y") /2y~ (1*P)/2 < ¢(1 + x)P™* by virtue of the additional property of the function 1. Approximating any
test function from Definition 1.2 by the compactly supported ones and passing to the limit we obtain equality (1)
in the general case. O

Lemma 3.2. Let g € C2(R), g(0) = 0, |g’(w)], 19" (w)| < ¢ Yu € R. ¢/(x) = e*** for certain o > 0, ug € ﬁi’l//(x),
uy(0,) = upy(0,y) = 0, f € Ly(0, T;ﬁf’l//(x)). Then there exists ty € (0,T) such that the problem (1) — (4) has a
unique strong solution u € X*¥* (I15).
Proof. Similarly to the proof of Lemma 3.1 we construct the desired solution as a fixed point of the map A but
defined on the space X>¥(x) (IT; ). Here §/*/y’ ~ ¢ and Lemma 2.9 where f; = f, fi = ¢’ (v)o, ensures that such a

map exists. Moreover, for functions v, € X2V ) (IT;,) according to inequality (48)

1/2
A0l x2ve0 < e(T)luoll gzwco + IFIl L, o 7200y + ta Aol e,
and, since |¢' (0)vx — ¢’ (0)0x| < c(|ox] + [0x[)|v — 0] + clox — v,
1/2

180 = Aol xzpen < (Tt (lollxzpe + (0]l 2wl = 0llxpe,

whence the assertion of the lemma succeeds. Here for convenience we denoted X%V () (IT})) as X g

Proof of Existence Part of Theorem 1.2. We will proof, that if X 2ot (IT%), a > 0 is a solution to problem
(1) - (4) for some T’ € (0, T], where the function g € C?(R) verifies (7), then for any admissible function 1/(x),
such that 1/’ is also admissible and /(x) < ce?®*, Vx > 0,

el < oCT, ol gavesn 171 g pgves)- (65)
Using (57), where iz = tlyx|x=0 We obtain

llellxcveo s, ) + Nttexx=ollLy B,y < € (66)
Next, since the hypotheses of Lemma 2.9 and Lemma 2.10 are satisfied, write down the corresponding analogues

of equalities (48) and (53) and subtract from the first one the doubled second one, then with the use of (49) and
(50) for sufficiently small ¢ we get

o [ty v v 2 @npixdy s [[@aeplcgdyt [[ it 6y + 1y )0'dxdy
< // 29 (1) (Usexexx = blixx + tyyyy — buiyy) p’dxdy — 2a //. g (u)p’dxdy
+£/ qucxxxixzody +c(¢) / u§x|x:0dy +¢ “//(u,zcxxx + ufcxyy + uf/yyy)p’dxdy
re(e) [[ wdvidpavy e [[ (s 2, + fopasy

+2 [/(g'(u)ux[Zuxxxp' + Uy p” = buyp’])dxdy — 2 ‘//g(u)fpdxdy - 2/ (9’ (w)g(w))*p’dxdy.
(67)
Choose p = 1. Note, that (7) with (66) imply that

[/ lg" (u)|dxdy < c||u||€my+||u||L2'+ < cl(//(uf(x + uzyy +u?)dxdy)P*, (68)

[ st saxay < clal,_ el 1.

Thus, from (67) we get
x|l 077100 ) + NtbyyllLe 077:1,0) < c.
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24 Initial-boundary value problems for two dimensional Kawahara equation

In particular
”uxx“Loo(H;,) <c. (69)

Now, in (67) chose p(x) = {/(x). By virtue of (69) |g(u)| < c|u| and then estimate (65) easily follows.
Note, that from (67) (where p(x) = po(x — x¢) for any x > 0) follows

A (tseserere; T') + AT (s T') + AT (uyyyys T') < c.

To finish the proof consider the set of initial-boundary value problems (55), (56), (3), (4). Lemma 3.2 imply that
for any h € (0, 1] there exists a solution to such a problem uj € X2¥*) (H;'O ( h))' Then with the use of estimate

(65) we first extend this solution to the whole time segment [0, T] and then similarly to the end of the proof of
the previous theorem pass to the limit as h — +co and construct the desired solution. Note, that here due to (69)
g(u)¢x € Li(IT}) Vp without any additional assumptions on the weight function .0

4. Uniqueness of solutions. The following is the appropriate text. In the following section we give proof of
the uniqueness of the solutions in the first two theorems.

Theorem 4.1. Let p € [0,3] in (7), ¥(x) be an admissible weight function, such that ¥’ (x) is also an admissible
weight function and inequality (8) be verified. Then for any T > 0 and M > 0 there exists a constant ¢ = ¢(T, M),
such that for any two weak solutions u(t,x,y) and u(t, x,y) to problem (1) — (4), satisfying ||u||X£(x>, ||ﬁ||X;ﬁ<x) <M

with corresponding data uy, uy € /™ £, fe Li(0, T; Ll//(x)) the following inequality holds:

24 2+
=@l < elllto =Tl s + 1f = 71, g (70)

Proof . Letw = u—u, wg = up —up, F = f — f For the function w apply Lemma 3.1, where f; = 0. Note that
inequality (8) implies that (y/y’)"/* < c¢(y/)P/4y?/4, thus

( // |ulPubydxdy)* < |lul (¢ /'), | // W (g9 odxdy] '
< cllu@) 4L lu@) YA, (71)

< Cl(ﬂ(Uix + uiy + uz)lﬁ'dxdy)f’/“l/“(//uZI//dxdy)P/““/{

so g’ (w)uy € L1(0,T; Lw(x)), since p < 3.

b
As a result, we derive from (43) that for t € (0, T]

L t
// w*dxdy +1(0) [) ,ug‘xzody + /0 ”//[Swix + a)zy +3bw? + a)i — aw?1y dxdydr

< // wiydxdy + ¢ /0 t // w*ydxdydr + 2 /0 t / (F = (¢ (wux — ¢ (D)) wdxdtdr.

(72)

Where

2|/Ot//(g/(u)—g'(mﬁx)wwdxdﬂ =2|/0t//(g(u)—g(a)(w¢)xdxdt| < c/ ([ul? +[@P) () |dxdy, (73)

where similarly to (71)
// [ul? lowxly dxdy < [l (99 . ( // W (92 2 ddy) // ydxdy)'?

< ¢( // (U2, +ul, + 1)y dxdy)?!*( // ubPdxdy)P!( // (02, + 0%, + ) dxdy)'*( // *Ydxdy)®/*
<e [/(w,zcx + wiy + o)y dxdy

se(e)( [ owad vty dxay?” [[ o*ydray

where ¢ > 0 can be chosen arbitrarily small. Then inequalities (72), (74) provide the desired result.c0

The next theorem provides the uniqueness part of Theorem 1.2.

Theorem 4.2. Let the function g € C2(R) verifies condition (9). Let /(x) be an admissible weight function, such
that Y’ (x) is also an admissible weight function and condition (10) holds. Then for any T > 0 and M > 0 there exists
a constant ¢ = ¢(T, M), such that for any two strong solutions u(t, x,y) and u(t, x,y) to problem (1) — (4), satisfying

(74)
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||u||X(zd,¢(x) (1m5)° ”E”xf;‘“") ) < M, with the corresponding data uy, uy € LZJEX), f, fe Li(0, T;LZJEX)) inequality (70)

T
holds.
Proof. The proof mostly repeats the proof of Theorem 4.1. Note that here obviously ¢’ (w)uy, ¢’ (W)uy €

Lo(0,T; L;/f f_x)), thus equality (72) holds. The difference is related only to the nonlinear term. In comparison with

(73) we estimate it in the following way: since
g Wi~ g @ = (¢ @) = 9@ +g @2 [[ (6 @y - f @TJopaxdy
~ 12 [ (¢ - g @opixay - [[ 6" @Twtyixdy - [[ ¢ @atyara 75)
< [[ (utt+ @) (sl + @ yotyanay + [[ otyardy.
By virtue of (10) < ¢y (@+D/2 () (r=2)/2r) y (r+2)/(2r)

[ ttuotyay < e [[ gty ot gy

A [ AN 10 0 Al

r=2

< cllull %L ( // (%, + 0%, + D)y dxdy) ™ // W pdxdy) '

j2iud

<e //(wﬁx + 0l +0*)Y dxdy + c(e) // w*ydxdy,

where s¢(r) = i - % < % and 2 < ;5 < +c0. The desired result obtained from (72) and (75). O

Theorem 4.3. Let the function g € C*(R) verifies condition (9). Let /(x) be an admissible weight function, such
that ' (x) is also an admissible weight function and for certain positive constant

Y (x)PI(x) 2 co Vx 2 0. (76)

Then for any T > 0 and M > 0 there exists constant ¢ = ¢(T, M) such that for any two strong solutions u(t, x, y)
and u(t,x,y) to problem (1) - (4), satisfying |lull y2yco.l[ull 2v < M, with corresponding data uo, up € HY®

f,fe L,(0, T;ﬁfw(x)), uo(0,y) = uo(0,y) = 0, the following inequality holds:

>

= ullyzyeo gy ) < o = Boll gevio +1F = fllp, o rigzve)-

Proof. First of all note that the hypothesis of Theorem 4.2 is satisfied and, consequently, inequality (70) holds.
Let g} (u) = g'(u) — g’(0), then according to (9)

g1 ()| < clul?*. (77)

Adjoin the term g’ (0)uy to the linear term au, and consider an equation of (1) type, where g’ is substituted by g7.
Condition (76) implies that

¥ (x) 2
< ey (x). (78)
' (x)
In particular it means that g (u)uy, g} (W)ux € Lo (0, T; LZI’//’ i/ l'//'(x)). Write corresponding analog of (48) forw = u—-u

and fi = g7(w)ux — g} (W), then
2 2 2 2 ! 2 2 2
//(wxx + 0y, +boy + boy)ydxdy + ./o / (5Usexxx F Ol yy + Uyyyy) Y dxdyde
t ¢2
< ”//(ngx + a)gyy +bwd, + ba)gy)xﬁdxdy + c/ / (g1 (Wux — g4 (ﬁ)ﬁx)zwdxdydr
0

t t
5/0 / (@2, + wixyy + (oiyyy)lﬁ'dxdydr +c(e) /0 [/(wix + wzy + 0?)ydxdydr
t
+c/ / (F2. + Fzy + F)ydxdydr,
0

To estimate the integral with the nonlinear term apply (77), (78) and the corresponding analogue of (75)
y? ~
[ @it i@ sy < [[ quit e @totyrasiy e [ mirtoitia, oo
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where

// |ultub0®y T dxdy < llug [l lucy 2l oy,

< c||u||2.qz+j(x) [/(wix + wf/y +bo’ + bwi)dxdy, / [4]292 w2 w* YT dxdy

< g 212 [ otyaxay,

The statement of the theorem follows from inequality (79). O

5. Large-time decay of solutions. Now, we proof last two theorems and establish large-time decay of
solutions.
Proof of Theorem 1.3. Let /(x) = ¢ for a € (0, ay], will be specified later, uo € L/ f = 0. Consider the

24

unique solution to problem (1) — (4) from the space X, v () (IT3) VT.

Note that according to (71) g’ (u)u, € L1(0,T; me(x))
Apply Lemma 3.1, where f; = ¢’ (w)uy, fi =0, then equality (57) for p = 1 provides, that

lu(t, - L. < lluollL,, Yt = 0.

Equality (57) for p = ¢ implies that

d L
T [/ u’dxdy + / p5dy + 2a // (562, + uiy + (3b + 4a®)ul + buz + (4a’b + 160" — a)u*|Ydxdy
‘ (80)

-2 / (¢ (wyu)" Yidxdy

With the use of inequalities (59) and (60) we derive that uniformly with respect to L for certain constant c*
depending on the properties of the function g,

2 // (¢ (w)u)"ydxd < c( // (2, + 2, + u?)ydxdy)”( // wdxdy) P uoll?
<3 // (2, + 0, pdxdy + ¢ (lu I + luoll? ) // uydxdy.

It follows from (22) that

// u'dxdy < i—z // uyydxdy < JL[—Z( // wpdxdy)'1*( // W2 Ydxdy)'l?,
Z—i//uzlﬁdxdy < //uiyzﬂdxdy. (82)

mla Ta
2 // u pxdy > =2 // wydrdy + = // w2, dxdy. (83)

13b + 47| // ulydxdy < // 2 ydxdy + c(b, ap) // ubydxdy, (84)
21b| // ulydxdy < }1 // ul ydxdy + c(b) // ulydxdt (85)

Combining (80) - (85) we find that
// Wydxdy + / 2dy
0

e(b.a,a0) = ¢ (o [/47 + . )] // Wydxdy < 0.

(81)

and, so
In particular

Moreover,

(86)

+a/ (uxx + uyy)t//dxdy +al 724

Choose Ly, oy and €, such that > c*(e4p/(4 P4 ep) > ¢(b, a, ). Then it follows from (86) that

16L4

L
%/]uzwdxdy +/ pady + a//(uix + uzy)dxdy + aﬂﬂ u*dxdy < 0. (87)
0
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4
where f = 7.0

Proof of Theorem 1.4. Let the values Ly, @, €y, f be the same as as in the proof of the previous theorem,

l//(x) = 22 for certain a € (0; 0‘0], Uy € ﬁf,w(ﬂ

, 14o(0,y) = ugx(0,y) =0, [Jugllz,, < €. Consider the unique

solution to problem (1) — (4) u € onjl’//(x) (I1%.), VT. Since g’ (u)ux € Lo (0, T; Ll//(x>). Repeat the proof of Theorem

2,+

1.3 and obtain (86). Besides (11), it follows from (87) that

+00 L
‘/0 eaﬁr[/o ul _ody + aﬂ[uix + ﬂuzy]lﬁdxdy] dr < ||uOI|LZix). (88)
Similarly to (67), from (48) and (53) we get (for p = 0)
d 2 2 2 2 * L
T (Usex + uyy + buy + buy — 297 (u)) pdxdy < ¢ | uxx\xzody,
whence with the use of (68) and (88) follows that uniformly with respect to ¢t > 0
||uxx||L2,+ + ”uyy”Lz,Jr <cg
and
lullig ) < e (89)

In(67)letp =y
d 2 2 2 2 x 2
T (Usex + uyy + buy + buy — 29" (u))Ydxdy + (uxxxx)|x:0dy
+2a/ (5u% ., + 6u)26xyy + uzyyy)xﬁdxdy
< 2a // 29(1) (thxxxx — blixx + Uyyyy — buiyy)Pdxdy — 4ac ”//g* (u)dxdy
2 2 2 2 2
+£/ uxxxx|x=0dy +c(e) / uxx’xzody +2ea .[/(uxxxx F U yy + Uyyyy)Ydxdy
+ac(e) //(uix + uzy)t//dxdy + 2/ (g (W) iy [4QUpx + 40ty — 20bu |¢)dxdy
~ta [[ (¢ (g yaxay

Inequality (12) follows from (88) and (89). O
Thanks. The author thanks professor A. V. Faminskii for his guidance and suggestions.
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