УДК 517.925 MSC 4A36, 34C23 Оригинальное исследование DOI 10.52575/2687-0959-2025-57-3-186-192 EDN MPPBSO

Бифуркации петли сепаратрисы сшитого седло-узла в типичном двухпараметрическом семействе кусочно-гладких векторных полей

Ройтенберг В. Ш.

(Статья представлена членом редакционной коллегии Половинкиным И. П.) Ярославский государственный технический университет, Россия, 150023, г. Ярославль, Московский проспект, 88 vroitenberg@mailru

Аннотация. Рассматривается динамическая система на плоскости, заданная кусочно-гладким векторным полем. Пусть это векторное поле имеет такую особую точку S на линии L переключения, что в окрестности S с одной стороны L поле совпадает с гладким векторным полем, для которого S является седло-узлом с устойчивым параболическим сектором и центральным многообразием, трансверсальным L, а с другой стороны L оно совпадает с гладким векторным полем, трансверсальным L. Предполагается также, что из точки S выходит положительная полутраектория Г, не содержащая особых точек, отличных от S, предельная к S. Рассматривается типичное двухпараметрическое семейство кусочно-гладких векторных полей – деформация рассматриваемого векторного поля. Описано множество параметров, при которых векторное поле из этого семейства имеет устойчивую периодическую траекторию, рождающуюся из петли Г.

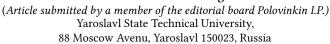
Ключевые слова: кусочно-гладкое векторное поле, седло-узел, петля сепаратрисы, бифуркация, устойчивая периодическая траектория

Для цитирования: Ройтенберг В.Ш. Бифуркации петли сепаратрисы сшитого седло-узла в типичном двухпараметрическом семействе кусочно-гладких векторных полей. *Прикладная математика & Физика.* 2025;57(3):186–192. DOI 10.52575/2687-0959-2025-57-3-186-192 EDN MPPBSO

Original Research

Bifurcations of a Separatrix Loop of a Sewn Saddle-Node in a Generic Two-Parameter Family of Piecewise Smooth Vector Fields

Vladimir Sh. Roitenberg[©]



vroitenberg@mailru

Abstract. We consider a dynamical system on the plane defined by a piecewise smooth vector field. Let this vector field have a singular point S on the switching line L such that in the neighborhood of S, on the one side of L, the field coincides with a smooth vector field for which S is a saddle-node with a stable parabolic sector and a central manifold transversal to L, and on the other side, it coincides with a smooth vector field transversal to L. It is also assumed that from the point S go a positive semitrajectory Γ , which does not contain singular points different from S and is limiting to S. We consider a generic two-parameter family of piecewise smooth vector fields, a deformation of the vector field under consideration. We describe a set of parameters for which a vector field from this family has a stable periodic trajectory born from a loop Γ .

Keywords: Piecewise Smooth Vector Field, Saddle-Node, Separatrix Loop, Bifurcation, Stable Periodic Trajectory

For citation: Roitenberg VSh. Bifurcations of a Separatrix Loop of a Sewn Saddle-Node in a Generic Two-Parameter Family of Piecewise Smooth Vector Fields. *Applied Mathematics & Physics*. 2025;57(3):186–192 (In Russ.). DOI 10.52575/2687-0959-2025-57-3-186-192 EDN MPPBSO

1. Введение. Теория бифуркаций гладких динамических систем началась с работ А.А. Андронова и его сотрудников 1930-х годов. Одной из первых были описаны локальная бифуркация седло-узла, а также нелокальная бифуркация петли сепаратрисы седло-узла, из которой рождается устойчивая периодическая траектория [1, 2]. В многомерном случае рождение периодической траектории из петли сепаратрисы седло-узла было доказано Л.П. Шильниковым [3]. Для кусочно-гладких динамических систем на плоскости бифуркации особых точек рассматривались в работах [4, 5], а также [6, 7, 8, 9]. В частности, там исследованы и бифуркации особых точек – «сшитых седло-узлов», бифурцирующих аналогично седло-узлу гладкой динамической системы. Бифуркации рождения периодической траектории из петли сепаратрисы сшитого седло-узла динамической системы на плоскости, задаваемой соответственно кусочно-гладким разрывным и непрерывным векторным полем, при типичных однопараметрических деформациях поля описаны в [10] и [11].

В настоящей работе рассматриваются бифуркации петли сепаратрисы особой точки на линии l переключения, «сшитой» из седло-узла гладкого векторного поля, заданного с одной стороны l и неособой точки гладкого векторного поля, заданного с другой стороны l, при типичных двухпараметрических деформациях кусочно-гладкого векторного поля.

2. Условия и результаты. Пусть компактное множество G на плоскости \mathbb{R}^2 с C^∞ -гладкой границей представлено в виде объединения компактных множеств G_k (k=1,...,m) с C^∞ -гладкими границами ∂G_k , таких, что $G_i \cap G_j = \partial G_i \cap \partial G_j$ при $i \neq j$. Обозначим $\mathcal D$ разбиение G на множества G_k . Пусть $\mathrm{Vec}^r(G)$ – топологическое векторное пространство C^r -векторных полей на G с C^r -топологией ($r \geq 3$) [12]. K усочно-гладкое векторное поле на G с разбиением $\mathcal D$, заданное векторными полями $\mathbf v^k \in \mathrm{Vec}^r(G)$ ((k=1,...,m) – класс всех векторных полей $\tilde{\mathbf v}:G\to\mathbb R^2$ таких, что $\tilde{\mathbf v}|_{\mathrm{int}G_k}=\mathbf v^k|_{\mathrm{int}G_k}$. Отождествим его с элементом $\mathbf v=(\mathbf v^1,...,\mathbf v^m)$ топологического векторного пространства

$$\operatorname{Vec}^r(G, \mathcal{D}) := \underbrace{\operatorname{Vec}^r(G) \oplus \cdots \oplus \operatorname{Vec}^r(G)}_{\text{""}}.$$

Траектории векторных полей $\tilde{\mathbf{v}}$ будем определять по правилу выпуклого доопрелеления в точках линий переключения $G_{ij} := \partial G_i \cap \partial G_j \neq \emptyset$ [5]. Они не зависят от выбора представителя $\tilde{\mathbf{v}}$ класса и потому называются *траекториями поля* \mathbf{v} .

Пусть E_0 – окрестность нуля в \mathbb{R}^2 . Рассмотрим семейство кусочно-гладких векторных полей с базой $E_0 - C^r$ -отображение $E_0 \ni \varepsilon \mapsto \mathbf{v}_{\varepsilon} = (\mathbf{v}_{\varepsilon}^1, ..., \mathbf{v}_{\varepsilon}^m) \in \mathrm{Vec}^r(G, \mathcal{D})$, удовлетворяющее сформулированными ниже условиям (У1)–(У4).

(**У1**) Векторное поле ${\bf v}_0^i$ имеет седло-узел $S_0 \in G_{ij}$ с устойчивым параболическим сектором.

По теореме о центральном многообразии и теореме редукции [13, глава 5] существуют такие окрестность нуля $E_1 \subset E_0$ и координаты $(x,y), |x| < d_0, |y| < d_1$ в окрестности V_{ε} точки S_0 , в которых поле $\mathbf{v}_{\varepsilon}^i, \varepsilon \in E_1$ имеет вид

$$P(x,\varepsilon)\partial/\partial x + Q(x,y,\varepsilon)\partial/\partial y,\tag{1}$$

где $P,Q\in C^{r-1},\,Q(x,0,\varepsilon)\equiv 0,\,\lambda:=Q_{y}'(0,0,0)<0,$

$$P(0,0) = P'_{r}(0,0) = 0, \quad a := P''_{rr}(0,0) > 0.$$
 (2)

(У2) При $\varepsilon = 0$ центральное многообразие, задаваемое уравнением y = 0, трансверсально пересекается с G_{ij} в точке S_0 .

При выполнении этого условия координаты (x,y) можно выбрать так, что $G_{ij} \cap V_{\varepsilon}$ задается уравнением $x = \xi(y,\varepsilon), y \in (-d_1,d_1)$, где

$$\xi(0,\varepsilon) = 0, \quad \xi_u'(y,\varepsilon) < 0.$$
 (3)

Будем также считать, что точки центрального многообразия с координатами (x,0) при x<0 (x>0) лежат в G_i (G_i) .

 $(\mathbf{y_3})$ Вектор $\mathbf{v}_0^J(S_0)$ не касается G_{ij} и направлен внутрь G_j . Положительная полутраектория Γ_0 поля \mathbf{v}_0 , начинающаяся в точке S_0 как положительная траектория поля \mathbf{v}_0^j , не содержит особых точек кроме S_0 и ω -предельна к S_0 , входя в S_0 по направлению оси S_0 (рис. 1).

Из (2) по теореме о неявной функции следует, что найдутся такие число $d \in (0, d_0)$ и окрестность нуля $E_2 \subset E_1$, что уравнение $P_x'(x, \varepsilon) = 0$ имеет решение $x = \rho_1(\varepsilon) \in (-d, d)$, $\varepsilon \in E_2$, где $\rho_1(\cdot) \in C^{r-1}$, $\rho_1(0) = 0$. Обозначим $\rho_2(\varepsilon) := P(\rho_1(\varepsilon), \varepsilon)$.

(**Y4**) $\det(\partial \rho_k(0)/\partial \varepsilon_l) \neq 0$.

Сделаем в некоторой окрестности нуля $E_3 \subset E_2$ замену параметров $\bar{\varepsilon}_k = \rho_k(\varepsilon), k = 1, 2$ и вернемся к их «старым» обозначениям. Теперь можно считать $E_3 = (-\delta_0, \delta_0)^2, \delta_0 < d$,

$$P(x,\varepsilon) = \varepsilon_2 + a(x - \varepsilon_1)^2 + R(x,\varepsilon), \tag{4}$$

где $R \in C^3$, и при всех $\varepsilon \in (-\delta_0, \delta_0)^2$

$$R(\varepsilon_1,\varepsilon)=R_x'(\varepsilon_1,\varepsilon)=R_{xx}''(0,0)=0,\;\;|R(x,\varepsilon)|\;<(a/2)(x-\varepsilon_1)^2\;\;$$
для $x\in[-d,d];$

$$\operatorname{sgn} P_x'(x,\varepsilon) = \operatorname{sgn}(x-\varepsilon_1)$$
 для $x \in [-d,d];$ (6)

$$Q(x,0,\varepsilon) \equiv 0$$
, $2\lambda < Q'_{\nu}(x,y,\varepsilon) < \lambda/2$ для $x,y \in [-d,d]$. (7)

Теорема. Пусть выполняются условия (У1)–(У4). Тогда существуют окрестность $U(\Gamma_0)$ кривой Γ_0 , число $\delta>0$ и разбиение области $E:=(-\delta,\delta)^2$ параметров на две части, $E_+:=(-\delta,\delta)\times(0,\delta)\cup\{(\varepsilon_1,\varepsilon_2):\varepsilon_1\in(0,\delta),\ \beta(\varepsilon_1)<\varepsilon_2\leq 0\}$, где $\beta:[0,\delta)\to(-\delta,0],\ \beta\in C^1,\ \beta(0)=\beta'(0)=0,\ u\ E_-:=E\setminus E_+$ такие, что поле \mathbf{v}_ε при $\varepsilon\in E_-$ не имеет в $U(\Gamma_0)$ периодических траекторий, а при $\varepsilon\in E_+$ имеет в $U(\Gamma_0)$ единственную периодическую траекторию Γ_ε , причем она является устойчивым гиперболическим предельным циклом, ее топологический предел $\int_{\varepsilon\to 0}^{\varepsilon} \Gamma_\varepsilon = \Gamma_0$, то есть для любой окрестности $V(\Gamma_0)$ кривой Γ_0 , существует такое число $\delta>0$, что $\Gamma_\varepsilon\subset V(\Gamma_0)$ для всех $\varepsilon\in E_+\cap (-\overline{\delta},\overline{\delta})^2$.

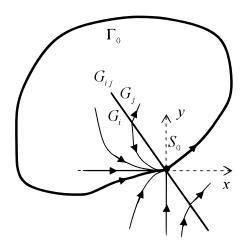


Рис. 1. Петля сепаратрисы сшитого седло-узла Fig. 1. The loop of separatrix of sewn saddle-node

3. Доказательство теоремы. Траектория поля \mathbf{v}_0^i , начинающаяся в точке с координатами (-d, u), где -d < u < d, задается уравнением $y = Y(x, u), -d \le x < 0$, где $Y \in C^{r-1}, Y(\cdot, u) \in C^r$,

$$Y_x'(x,u) = \frac{Q(x, Y(x,u), 0)}{P(x, 0)}.$$
 (8)

Так как производная

$$Y'_{u}(x, u) = \exp \int_{-d}^{x} \frac{Q'_{y}(s, Y(s, u), 0)}{P(s, 0)} ds,$$

то из (4), (5) и (7) получаем $0 < Y_u'(x,u) \le C \exp \frac{-\lambda}{4ax}$, где $C = \exp \frac{-\lambda}{4ad}$. Поскольку $Y(x,0) \equiv 0$, то $|Y(x,u)| \le Cd \exp \frac{-\lambda}{4ax}$. Отсюда, из (8), (4), (5) и (7) имеем оценку $|Y_x'(x,u)| \le \frac{C_1}{x^2} \exp \frac{-\lambda}{2ax}$ с некоторой постоянной C_1 . Так как

$$Y_{xx}^{\prime\prime} = \frac{Q_x^{\prime}(x,Y,0)}{P(x,0)} + \frac{Q_y^{\prime}(x,Y,0)}{P(x,0)}Y_x^{\prime} - \frac{Q(x,Y,0)P_x^{\prime}(x,0)}{P^2(x,0)},$$

то $|Y_{xx}''(x,u)| \le \frac{C_2}{x^4} \exp \frac{-\lambda}{2ax}$, где C_2 – постоянная. Аналогично получаем неравенство $|Y_{xxx}'''(x,u)| \le \frac{C_3}{x^6} \exp \frac{-\lambda}{2ax}$ с некоторой постоянной C_3 . Вследствие полученных оценок

$$Y(-0,u) = Y_x'(-0,u) = Y_{xx}''(-0,u) = Y_{xxx}''(-0,u) = 0 \text{ для всех } u \in (-d,d).$$
 (9)

Если d достаточно мало, то траектория Γ_0 трансверсально пересекает дугу x=-d, -d < y < d. Пусть $(-d, y_0)$ – координаты точки пересечения. Пользуясь тем, что центральное многообразие и соответственно координаты (x, y), в которых поле \mathbf{v}_0^i имеет вид (1), определены не однозначно, покажем, что координаты (x, y) и число d можно выбрать так, что по-прежнему выполняется (3), а $y_0 < 0$.

Предположим, что при выбранных координатах $y_0 \geq 0$. Пусть $y_0 < y_* < d, Y_*(x) := Y(x,y_*)$ при $-d \le x < 0$ и $Y_*(x) := 0$ при $0 \le x \le d$. Вследствие (9) $Y_*(x) - C^3$ -функция. Перейдем к координатам $\bar{x} = x$, $ar{y} = y - Y_*(x)$ и сохраним прежние обозначения координат. Поле $\mathbf{v}^i_{arepsilon}$ в новых координатах будет иметь вид $P(x,\varepsilon)\partial/\partial x+Q_*(x,y,\varepsilon))\partial/\partial y$, где $Q_*\in C^2$, $Q_*(x,0,0)\equiv 0$, то есть y=0 – центральное многообразие поля \mathbf{v}_0^i . Из доказательства теоремы о центральном многообразии [14, 13] следует, что d можно выбрать так, что векторное поле $\mathbf{v}_{\varepsilon}^{i}$ при ε , достаточно близких к нулю, имеет центральное многообразие $y=w(x,\varepsilon)$, $x \in [-d,d]$, где $w - C^2$ -функция, $w(x,0) \equiv 0$. Сделаем C^2 -замену $\bar{y} = y - w(x,\varepsilon)$, выпрямляющую центральное многообразие, и вернемся к прежним обозначениям координат. В новых координатах поле $\mathbf{v}_{\varepsilon}^{i}$ имеет тот же вид (1), где функция $P(x,\varepsilon)$ осталась прежняя, а функция Q удовлетворяет тем же условиям, что раньше, но теперь мы можем гарантировать только, что $Q \in C^1$. Поскольку сделанные замены координат были C^1 -близки к тождественному отображению, то δ можно считать выбранными столь малым, что пересечение G_{ij} с малой окрестностью точки S_0 задается уравнением вида $x=\xi(y,\varepsilon)$, где $\xi(0,0)=0$, а второе условие в (3) сохраняется. Сделав замену $\bar{x}=x-\xi(0,\varepsilon), \ \bar{y}=y$ и вернувшись к прежним обозначениям, можно считать, что в новых координатах поле $\mathbf{v}_{\varepsilon}^{i}$ по-прежнему имеет вид (1), а уравнение G_{ij} в окрестности удовлетворяет условиям (3). Уравнение пересечения Γ_0 с окрестностью точки S_0 теперь имеет вид $y = \hat{Y}(x) = Y(x,y_0) - Y(x,y_*)$, при этом $\hat{Y}(-d) = y_0 - y_* < 0$, чего и хотели добиться.

Из (4) и (5) следуют равенства P(0,0)=0, $P'_{\varepsilon_2}(0,0)=1$, $P'_{\varepsilon_1}(0,0)=0$, из которых по теореме о неявной функции получаем, что существуют такие число $\delta>0$ и C^1 -функция $\beta:(-\delta,\delta)\to(-\delta,0]$, $\beta(\varepsilon_1)=-a\varepsilon_1^2+o(\varepsilon_1^2)$, что

$$\operatorname{sgn} P(0, \varepsilon) = \operatorname{sgn} (\varepsilon_2 - \beta(\varepsilon_1))$$
 для всех $\varepsilon \in (0, \delta) \times (-\delta, \delta)$. (10)

Выбор δ будет уточнен в дальнейшем.

Пусть $E_+^+ := (-\delta, \delta) \times (0, \delta)$, $E_+^- := \{(\varepsilon_1, \varepsilon_2) : \varepsilon_1 \in [0, \delta), \ \beta(\varepsilon_1) < \varepsilon_2 \le 0\}$, $E_+ := E_+^+ \cup E_+^-$, $E_- := E \setminus E_+$. Из (4)–(6) и (10) следует, что при $\varepsilon \in E_+^ P(\cdot, \varepsilon)$ имеет нуль $x_0(\varepsilon) \in (0, \varepsilon_1]$ и

$$P(x,\varepsilon) > 0$$
 для всех $x \in [-d, x_0(\varepsilon)), \varepsilon \in \mathbb{E}_+^-,$ (11)

$$P(x,\varepsilon) > 0$$
, для всех $x \in [-d,d], \varepsilon \in \mathbb{E}_{+}^{+}$, (12)

$$P(\cdot, \varepsilon)$$
 имеет нуль на $[-d, 0]$ для всех $\varepsilon \in E_-$. (13)

Пусть $\Pi_{\varepsilon}:=[-d,x_0(\varepsilon))\times[-\bar{d},\bar{d}]$ при $\varepsilon\in \mathrm{E}_+^-,\Pi_{\varepsilon}:=[-d,d]\times[-\bar{d},\bar{d}]$ при $\varepsilon\in \mathrm{E}_+^+,\Pi_{\varepsilon}^-:=\{\{x,y)\in\overline{\Pi}_{\varepsilon}:y\leq 0,\ x\leq \xi(y,\varepsilon)\},$ а δ и $\bar{d}\in (0,d]$ выбраны так, чтобы $-d<\xi(y,\varepsilon)< d$ при всех $y\in [-\bar{d},\bar{d}],\ \varepsilon\in \mathrm{E}_+$, и для любого $\varepsilon\in \mathrm{E}_+^-$ уравнение $\xi(y,\varepsilon)=x_0(\varepsilon)$ имело решение $y=y_0(\varepsilon)$ (рис. 2). Будем отождествлять Π_{ε}^- с подмножеством в $V_{\varepsilon}\cap G_i$, состоящим из точек с координатами $(x,y)\in\Pi_{\varepsilon}^-$.

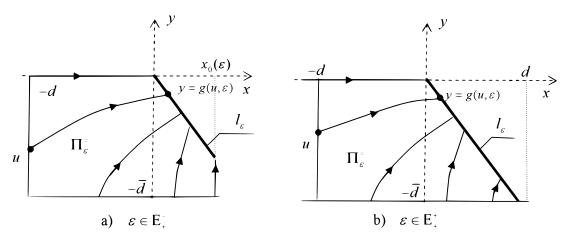


Рис. 2. Множество Π_{ε}^- . Отображение $g(\cdot, \varepsilon)$ Fig. 2. The set Π_{ε}^- . The map $g(\cdot, \varepsilon)$

Пусть T_{ε} – дуга G_{ij} , заданная в координатах (x,y) уравнением $x=\xi(y,\varepsilon), y\in[-d_*,d_*]$, где $d_*\in(0,\bar{d}]$. При достаточно малых d_* и δ траектория поля $\mathbf{v}_{\varepsilon},\varepsilon\in E$, начинающаяся в точке этой дуги с координатами $(\xi(u,\varepsilon),u)$, пересекает дугу $x=-d,\ y\in(-\bar{d},0)$ в точке с координатами $(-d,f(u,\varepsilon))$, где $f\in C^1$ и

$$0 < f_u'(u,\varepsilon) \le N \tag{14}$$

с некоторой постоянной N.

Ввиду (11) и (12) для любого $\varepsilon \in E_+$ определено дифференциальное уравнение

$$\frac{dy}{dx} = \frac{Q(x, y, \varepsilon)}{P(x, \varepsilon)}, \quad (x, y) \in \Pi_{\varepsilon}. \tag{15}$$

Вследствие (7), (11) и (12) оно имеет решение $Y(x,u,\varepsilon)$, определенное при $\varepsilon\in E_+^-$ для $x\in [-d,x_0(\varepsilon))$, а при $\varepsilon\in E_+^+$ для $x\in [-d,d]$, удовлетворяющее начальному условию $Y(-d,u,\varepsilon)=u,u\in [-d,d]$. Уравнение $y=Y(x,u,\varepsilon)$ задает траекторию поля $\mathbf{v}_{\varepsilon}^i$, в окрестности точки S_0 .

Из (3), (7), (11) и (12) получаем

$$[Q(x,y,\varepsilon)) - \xi_y'(y,\varepsilon)P(x,\varepsilon)]_{x=\xi(y,\varepsilon)} > 0 \text{ для всех } \varepsilon \in \mathcal{E}_+, y \in [-\bar{d},0]. \tag{16}$$

Ввиду (7), (11) и (16) при $\varepsilon \in E_+^-$ граница множества Π_ε^- состоит из дуг $[-\bar{d},0] \times \{0\}$ и $\{x_0(\varepsilon)\} \times [-\bar{d},y_0(\varepsilon)]$ траекторий поля \mathbf{v}_ε^i , дуг $\{-d\} \times [-\bar{d},0]$ и $[-d,x_0(\varepsilon)) \times \{-\bar{d}\}$ в точках которых траектории поля \mathbf{v}_ε^i входят в Π_ε^- , не касаясь этих дуг, из дуги $l_\varepsilon: x = \xi(y,\varepsilon)$, $y \in (y_0(\varepsilon),0]$, в точках которой траектории выходят из Π_ε^- , не касаясь этой дуги (рис. 2). Следовательно, траектория поля \mathbf{v}_ε^i , начинающаяся в точке с координатой $(-d,u), u \in (-\bar{d},0]$, выходит из Π_ε^- , пересекая дугу l_ε в точке с координатой $y = g(u,\varepsilon), g(0,\varepsilon) = 0$. При $\varepsilon \in E_+^+$ аналогично получаем, что траектория поля \mathbf{v}_ε^i , начинающаяся в точке с координатой $(-d,u), u \in (-\bar{d},0]$, выходит из Π_ε^- , пересекая дугу l_ε в точке с координатой $y = g(u,\varepsilon)$. Из теорем о функциях соответствия по траекториям [15] следует, что g является C^1 -функцией от $(u,\varepsilon) \in (-\bar{d},0] \times E_+$.

Производная $Y_u'(x, u, \varepsilon)$ удовлетворяет уравнению в вариациях

$$\frac{d}{dx}Y'_{u} = \frac{Q'_{y}(x, Y(x, u, \varepsilon), \varepsilon)}{P(x, \varepsilon)} \cdot Y'_{u}.$$

и начальному условию $Y'_u(-d, u, \varepsilon) = 1$. Поэтому

$$Y'_u(c, u, \varepsilon) = \exp \int_{-d}^{c} \frac{Q'_y(x, Y(x, u, \varepsilon), \varepsilon)}{P(x, \varepsilon)} dx.$$

Используя (4), (5), (7) и учитывая, что при $u \in (-\bar{d},0]$ $c = c(u,\varepsilon) := \xi(g(u,\varepsilon),\varepsilon) \ge 0$, имеем

$$0 < Y_u'(x, u, \varepsilon) \Big|_{x=c(u,\varepsilon)} \le \exp(\lambda/2) \int_{-d}^{c(u,\varepsilon)} \frac{dx}{\varepsilon_2 + 2a(x-\varepsilon_1)^2} \le \exp(\lambda/2) \int_{-d}^{0} \frac{dx}{\varepsilon_2 + 2a(x-\varepsilon_1)^2}.$$
 (17)

При $\varepsilon \in \mathrm{E}_+^+$ отсюда получаем

$$0 < Y_u'(x, u, \varepsilon) \Big|_{x = c(u, \varepsilon)} \le \exp \frac{\lambda}{2\sqrt{2a\varepsilon_2}} \left(\operatorname{arctg} \frac{-\sqrt{2a\varepsilon_1}}{\sqrt{\varepsilon_2}} + \operatorname{arctg} \frac{\sqrt{2a}(d + \varepsilon_1)}{\sqrt{\varepsilon_2}} \right). \tag{18}$$

При $\varepsilon_1 \le 0$ из (18) следует, что

$$0 < Y_u'(x, u, \varepsilon)\big|_{x=c(u,\varepsilon)} \le \exp \frac{\lambda}{2\sqrt{2a\varepsilon_2}} \operatorname{arctg} \frac{\sqrt{2a}(d+\varepsilon_1)}{\sqrt{\varepsilon_2}}.$$

Поэтому, считая δ выбранным так, чтобы $\frac{\sqrt{2a}(d-\delta)}{\sqrt{\delta}}>1$, получаем

для всех
$$\varepsilon \in \mathbb{E}_+^+$$
, $\varepsilon_1 \le 0$ $0 < Y_u'(x, u, \varepsilon) \big|_{x=c(u,\varepsilon)} \le \exp \lambda K(\varepsilon)$, где $K(\varepsilon) := \frac{\pi}{8\sqrt{2a\varepsilon_2}}$. (19)

При $\varepsilon \in E_+^+$, $\varepsilon_1 > 0$ из (18) имеем

$$0 < Y_u'(x, u, \varepsilon) \Big|_{x = c(u, \varepsilon)} \le \exp \frac{\lambda}{2\sqrt{2a\varepsilon_2}} \left(\operatorname{arctg} \frac{\sqrt{2a\varepsilon_2}d}{\varepsilon_2 + 2a\varepsilon_1(d + \varepsilon_1)} \right). \tag{20}$$

Покажем, что

для всех
$$\varepsilon \in \mathcal{E}_{+}^{+} \varepsilon_{1} > 0 \ 0 < Y_{u}'(x,u,\varepsilon) \left|_{x=c(u,\varepsilon)} \le \exp \lambda K(\varepsilon), \right.$$
 (21)

где $K(\varepsilon):=\min\left\{rac{d}{4(arepsilon_2+2aarepsilon_1(d+arepsilon_1))},\,rac{\pi}{8\sqrt{2aarepsilon_2}}
ight\}.$ Действительно, если $rac{\sqrt{2aarepsilon_2}d}{arepsilon_2+arepsilon_1(d+arepsilon_1)}<1$, то из (20) получаем

$$0 < Y_u'(x, u, \varepsilon) \Big|_{x = c(u, \varepsilon)} \le \exp \frac{\lambda}{2\sqrt{2a\varepsilon_2}} \frac{\sqrt{2a\varepsilon_2}d}{2(\varepsilon_2 + 2a\varepsilon_1(d + \varepsilon_1))} \le \exp \lambda K(\varepsilon),$$

а если $\frac{\sqrt{2a\varepsilon_2}d}{\varepsilon_2+\varepsilon_1(d+\varepsilon_1)}\geq 1$, то $\arctan\frac{\sqrt{2a\varepsilon_2}d}{\varepsilon_2+2a\varepsilon_1(d+\varepsilon_1)}\geq \frac{\pi}{4}$, и

$$0 < Y_u'(x, u, \varepsilon) \big|_{x = c(u, \varepsilon)} \le \exp \lambda \frac{\pi}{8\sqrt{2a\varepsilon_2}} \le \exp \lambda K(\varepsilon).$$

При $\varepsilon \in E_{+}^{-}$ из (17) следует оценка

$$0 < Y_u'(x, u, \varepsilon) \Big|_{x=c(u,\varepsilon)} \le \exp(\lambda/4a) \int_{-d}^0 \frac{dx}{(x-\varepsilon_1)^2} = \exp \lambda K(\varepsilon),$$
 (22)

где $K(\varepsilon):=\frac{d}{4a\varepsilon_1(d+\varepsilon_1)}$. Функция $g(u,\varepsilon)$ удовлетворяет тождеству $Y(\xi(g(u,\varepsilon),\varepsilon),u,\varepsilon)-g(u,\varepsilon)\equiv 0$, дифференцируя которое получаем

$$\left[Y_x'(x,u,\varepsilon)\xi_y'(y,\varepsilon)g_u'(u,\varepsilon)+Y_u'(x,u,\varepsilon)\right]_{x=\xi(y,\varepsilon),y=q(u,\varepsilon)}-g_u'(u,\varepsilon)\equiv 0.$$

Следовательно,

$$g'_{u}(u,\varepsilon) = \left[\frac{Y'_{u}(x,u,\varepsilon)}{1 - Y'_{x}(x,u,\varepsilon)\xi'_{y}(y,\varepsilon)}\right] \quad x = \xi(y,\varepsilon), y = g(u,\varepsilon) \quad . \tag{23}$$

При $u \in (-\bar{d},0]$ $Y(x,u,\varepsilon) \leq 0$. Отсюда и из (15), (7), (11) и (12) имеем $Y_x'(x,u,\varepsilon) \geq 0$. Так как $\xi_u'(y,\varepsilon) < 0$, то 1 — $Y_x'(x,u,\varepsilon)\xi_u'(y,\varepsilon) \ge 1$, и из (19), (21) — (23) получаем

$$0 < g_u'(u,\varepsilon) \le Y_u'(x,u,\varepsilon) \le \exp \lambda K(\varepsilon)$$
 для всех $u \in (-\bar{d},0], \varepsilon \in E_+$.

ISSN 2687-0959 Прикладная математика & Физика, 2025, том 57, N 3 Applied Mathematics & Physics, 2025, Volume 57, No 3

Так как $K(\varepsilon) \to +\infty$ при $\varepsilon \to 0$, а $\lambda < 0$, то δ можно считать выбранным столь малым, что

$$0 < g'_u(u, \varepsilon) \le \min\{1/(2d_*), 1/(2N)\}$$
 для всех $u \in (-\bar{d}, 0], \varepsilon \in \mathcal{E}_+.$ (24)

Из (24) и равенства $g(0,\varepsilon)=0$ следует, что $\forall (u,\varepsilon)\in (-\bar{d},0]\times \mathrm{E}_+$ имеем $g(u,\varepsilon)\in (-d_*,0]$. Функция $\chi_\varepsilon:=g(f(\cdot,\varepsilon),\varepsilon),\ \varepsilon\in \mathrm{E}_+$, является функцией последования по траекториям поля \mathbf{v}_ε на дуге T_ε . Она отображает отрезок $[-d_*,d_*]$ в $(-d_*,0)$. Вследствие (14) и (24) $0<(\chi_\varepsilon)'(u)<1/2$ $\forall u\in [-d_*,d_*]$. Поэтому χ_ε имеет единственную неподвижную точку $u_*\in (-d_*,0)$, при этом $0<(\chi_\varepsilon)'(u_*)<1/2$. Соответственно, дугу T_ε пересекает единственная периодическая траектория поля \mathbf{v}_ε – устойчивый гиперболический предельный цикл Γ_ε .

Фиксируем число d_* . Обозначим γ_{ε}^+ и γ_{ε}^- не пересекающиеся между собой простые замкнутые кривые, состоящие из дуг траекторий поля \mathbf{v}_{ε} , начинающихся в точках A_{ε}^+ и A_{ε}^- дуги T_{ε} с координатами соответственно

$$y = d_*$$
 и $y = -d_*$,

и кончающихся соответственно в точках B_{ε}^+ и B_{ε}^- с координатами $y=f(d_*,\varepsilon)$ и $y=f(-d_*,\varepsilon)$, и из дуг границы области, заданной неравенствами

$$-d \le x \le \xi(y, \varepsilon), \quad -\bar{d} \le y \le \bar{d},$$

между соответственно точками A_{ε}^+ и B_{ε}^+ , A_{ε}^- и B_{ε}^+ . Кривые γ_{ε}^+ и γ_{ε}^- ограничивают связную область W_{ε} , в которой имеется единственная периодическая траектория Γ_{ε} . При $\varepsilon=0$ W_0 – окрестность контура Γ_0 . Пусть μ – расстояние от Γ_0 до $\gamma_0^+ \cup \gamma_0^-$ в евклидовой метрике в G. Тогда для достаточно малого δ расстояние от Γ_0 до $\gamma_{\varepsilon}^+ \cup \gamma_{\varepsilon}^-$ при $\varepsilon \in E_+(\delta) = E_+$ больше $\mu/2$ и потому W_{ε} также окрестность Γ_0 . Пусть $0 < \rho_0 < \mu/2$ и $U(\Gamma_0) - \rho_0$ -окрестность Γ_0 . Тогда $U(\Gamma_0) \subset W_{\varepsilon}$ для любого $\varepsilon \in E_+(\delta)$. Поскольку при доказательстве существования траектории Γ_{ε} можно заменить d_* на сколь угодно малое число, то можно выбрать столь малое δ , что $\Gamma_{\varepsilon} \subset U(\Gamma_0)$ при $\varepsilon \in E_+(\delta)$. Следовательно, найдены окрестность $U(\Gamma_0)$ и число δ , существование которых утверждается в теореме. Аналогично, для любой ρ -окрестности U_{ρ} кривой Γ_0 с $\rho \in (0, \rho_0]$ можно найти такое $\delta_{\rho} \in (0, \delta)$, что $\Gamma_{\varepsilon} \subset U_{\rho}$ при $\varepsilon \in E_+(\delta_{\rho})$, то есть $\int_{\varepsilon \to 0}^{\operatorname{lt}} \Gamma_{\varepsilon} = \Gamma_0$.

Тот факт, что при $\varepsilon \in \mathcal{E}_-$ в W_{ε} , а потому и в $U(\Gamma_0)$ нет периодических траекторий, следует из (13). Все утверждения теоремы доказаны.

Список литературы

- 1. Андронов А.А, Леонтович Е.А. Некоторые случаи зависимости предельных циклов от параметра. *Ученые записки Горьковского университета*. 1939;6:3—24.
- 2. Андронов А.А., Леонтович Е.А., Гордон И.И., Майер А.Г. Теория бифуркаций динамических систем на плоскости. М., Наука. 1967. 488 с.
- 3. Шильников Л.П. О некоторых случаях рождения периодических движений из особых траекторий. *Математический сборник*. 1963; 61(4):443-466.
- Козлова В.С. Особые точки первой степени негрубости, лежащие на линии разрыва правых частей системы. Москва, МГУ. 1984. Деп. в ВИНИТИ. № 4284-84.
- 5. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. М., Наука, 1985. 224 с.
- 6. di Bernardo M., Budd Ch.J., Capneys A.R., Kowalczyk P. Piecewise smooth dynamical systems. Appl. Math. Sci. V. 163. London, Springer-Verlag. 2008. 483 p.
- 7. Guardia M., Seara T.M., Teixeira M.A. Generic bifurcations of low codimension of planar Filippov systems. *Journal of Differential Equations*. 2011;250(4):1967–2023.
- 8. Kuznetsov Yu.A., Rinaldi S, Gragnani A. One-parameter bifurcations in planar Filippov systems. *International Journal of Bifurcation and Chaos.* 2003;13(8):2157–2188.
- 9. Simpson D.J.W. Bifurcations in piecewise-smooth continuous systems. World scientific series on nonlinear science, series A. Vol. 69. World Scientific Publ. 2010. 238 p.
- 10. Ройтенберг В.Ш. О бифуркациях петель сепаратрис особых точек на линии разрыва. Ярославль, Яросл. политехн. ин-т. 1987. Деп. в ВИНИТИ. № 2795-В87.
- 11. Ройтенберг В.Ш. О рождении предельного цикла из петли сепаратрисы сшитого седло-узла. Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика. 2022; 22(2):159-168.
- 12. Палис Ж., В. Мелу. Геометрическая теория динамических систем. Введение. М., Мир. 1986. 301 с.
- 13. Шильников Л.П., Шильников А.Л., Тураев Д.В., Чуа Л. Методы качественной теории в нелинейной динамике. Часть 1. Москва–Ижевск, Институт компьютерных исследований. 2004. 547 с.
- 14. Марсден Дж., Мак-Кракен М. Бифуркация рождения цикла и ее приложения. М., Мир. 1980. 368 с.
- 15. Андронов А.А., Леонтович Е.А., Гордон И.И., Майер А.Г. Качественная теория динамических систем второго порядка. М., Наука. 1966. 568 с.

References

- 1. Andronov AA., Leontovich EA. Some cases of dependence of limit cycles on a parameters. *Scientific notes of Gorky University*. 1939;6:3-24 (In Russ).
- 2. Andronov AA., Leontovich EA., Gordon II., Maier AG. Theory of bifurcations of dynamic systems on a plane. Moscow, Nauka Publ. 1967. 488 p (In Russ).
- 3. Shilnikov LP. Some cases of generation of period motions from singular trajectories. *Sbornik. Mathematics.* 1963;61(4):443-466 (In Russ).
- 4. Kozlova VS. Singular points of the first degree of non-coarsenees lying on a line of discontinuity of the right-hand parts of a system. 1984. Deposited in VINITI. No. 4284-84 (In Russ).
- 5. Filippov AF. Differential equations with discontinuous right-hand side. Moscow, Nauka Publ. 1985. 224 (In Russ).
- 6. di Bernardo M., Budd ChJ., Capneys AR., Kowalczyk P. Piecewise smooth dynamical systems. Appl. Math. Sci. V. 163. London, Springer-Verlag. 2008. 483 p.
- 7. Guardia M., Seara TM., Teixeira MA. Generic bifurcations of low codimension of planar Filippov systems. *Journal of Differential Equations*. 2011;250(4):1967–2023.
- 8. Kuznetsov YuA., Rinaldi S, Gragnani A. One-parameter bifurcations in planar Filippov systems. *International Journal of Bifurcation and Chaos.* 2003;13(8):2157–2188.
- 9. Simpson DJW. Bifurcations in piecewise-smooth continuous systems. World scientific series on nonlinear science, series A. Vol. 69. World Scientific Publ. 2010. 238 p.
- 10. Roitenberg VSh. On bifurcations of separatrix loops of singular points on the line of discontinuity. 1984. Deposited in VINITI. No. 2795-B87 (In Russ).
- 11. Roitenberg VSh. On generation of a limit cycle from a separatrix loop of a sewn saddle-node. *Izvestiya of Saratov University. Mathematics. Mechanics. Informatics.* 2022; 22(2):159–168 (In Russ).
- 12. Palis J., Melo W. Geometric theory of dynamical systems. An introduction. New-York; Heidelberg; Berlin. Springer-Verlag. 1982. 198 p.
- 13. Shilnikov LP., Shilnikov AL., Turaev DV., Chua LO. Methods of qualitative theory in nonlinear dynamics: Part 1. River Edge, N.-J. World Scientific. 1998. 412 p.
- 14. Marsden JE., McCracken M. The Hopf bifurcation and its applications. New-York. Springer-Verlag. 1986.
- 15. Andronov AA., Leontovich EA., Gordon II., Maier AG. The qualitative theory of dynamical systems of second order. Moscow, Nauka Publ. 1966. 568 p. (In Russ).

Конфликт интересов: о потенциальном конфликте интересов не сообщалось. Conflict of interest: no potential conflict of interest related to this article was reported.

Поступила в редакцию 02.05.2025 Поступила после рецензирования 11.08.2025 Принята к публикации 15.08.2025 Received May 2, 2025 Revised August 11, 2025 Accepted August 15, 2025

СВЕДЕНИЯ ОБ АВТОРЕ

Ройтенберг Владимир Шлеймович – кандидат физико-математических наук, доцент, доцент кафедры высшей математики, Ярославский государственный технический университет, г. Ярославль, Россия

INFORMATION ABOUT THE AUTHOR

Vladimir Sh. Roitenberg – Candidate of Physical and Mathematical Sciences, Assosiate Professor, Assosiate Professor of the Department of Higher Mathematics, Yaroslavl State Technical University, Yaroslavl, Russia

К содержанию