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Аннотация. Развита динамическая теория когерентного рентгеновского излучения пучков релятивистских электро-
нов в периодической слоистой среде с тремя слоями на периоде. Когерентное рентгеновское излучение рассматри-
вается в геометрии рассеяния Брэгга в рамках двухволнового приближения динамической теории дифракции в
виде суммы вкладов параметрического рентгеновского излучения и дифрагированного переходного излучения
с учетом их интерференции. Получены выражения, описывающие спектрально-угловые и угловые плотности
параметрического рентгеновского излучения, дифрагированного переходного излучения и их интерференции
с учетом угловой расходимости электронного пучка. На основе полученных выражений проведены численные
расчеты для конкретных параметров процесса излучения.
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Abstract. A dynamic theory of coherent X-ray radiation of relativistic electron beams in a periodic layered medium with three
layers per period has been developed. Coherent X-ray radiation is considered in the Bragg scattering geometry within the
framework of the two-wave approximation of the dynamic diffraction theory as a sum of contributions from parametric X-ray
radiation and diffracted transition radiation, taking into account their interference. Expressions are obtained that describe the
spectral-angular and angular densities of parametric X-ray radiation, diffracted transition radiation and their interference,
taking into account the angular divergence of the electron beam. Based on the expressions obtained, numerical calculations
are performed for specific parameters of the radiation process.
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1. Введение. Впервые когерентное рентгеновское излучение (КРИ) релятивистских электронов,
пересекающих мишень, имеющую периодическую слоистую структуру, в рамках динамической теории
дифракции рентгеновских волн исследовалось в работе [1]. Параметрическое рентгеновское излучение
(ПРИ) в такой мишени генерируется вследствие дифракции псевдо-фотонов кулоновского поля реля-
тивистского электрона на слоях, аналогично генерации ПРИ в монокристалле на атомных плоскостях
[2, 3]. Дифрагированное переходное излучение (ДПИ) возникает вследствие дифракции на слоях мишени
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переходного излучения (ПИ), генерируемого вблизи передней поверхности мишени, так же как ДПИ в
монокристалле возникает вследствие дифракции ПИ на атомных плоскостях [4, 5]. Следует отметить, что
формулы динамической теории [1] хорошо описывают данные эксперимента по излучению релятивист-
ских электронов в периодической слоистой среде [6]. КРИ релятивистского электрона в периодической
слоистой среде для общего случая асимметричного относительно поверхности мишени отражения поля
электрона в геометрии рассеяния Лауэ впервые рассматривался в работе [7], а в геометрии рассеяния
Брэгга – в работе [8]. В работах [7, 8] было показано, что в периодической слоистой среде интенсивность
КРИ релятивистских электронов должна быть в несколько раз выше, чем КРИ релятивистского электрона
в монокристалле в аналогичных условиях. Также в работах [7, 8] была показана возможность увеличения
интенсивности параметрического рентгеновского излучения и дифрагированного переходного излу-
чения за счет изменения параметров динамического рассеяния, определяющих степень отражения и
поглощения рентгеновского излучения в периодической слоистой среде.

Примечательно, что слоистые структуры представляют большой интерес для генерации излучения
в мягком рентгеновском диапазоне (100-2000 эВ), текущие исследования активно изучают эту область
[9, 10, 11]. Стоит отметить недавние исследования по генерации мягкого рентгеновского излучения
электронами низких энергий порядка десятков и сотен кэВ из структур Ван-дер-Ваальса [12, 13, 14].
В недавних работах авторов [15, 16, 17, 18] исследовалось когерентное рентгеновское излучение в
периодической слоистой среде и монокристалле в динамической дифракции рентгеновских волн.

Во всех цитируемых выше работах излучение релятивистских электронов рассматривалось в перио-
дической слоистой среде с двумя различными слоями на периоде.

Когерентное рентгеновское излучение релятивистских электронов, пересекающих периодическую
слоистую структуру с тремя слоями на период, впервые рассматривалось в работе [19].

В работе [19] получены выражения, описывающие спектрально-угловые ПРИ и ДПИ в трехслойной
структуре. Показано, что, меняя параметры слоев рассматриваемой трехслойной структуры, можно
влиять на параметры динамического рассеяния рентгеновского излучения. Показана возможность
значительного роста параметров динамического рассеяния рентгеновских волн в слоистой среде с тремя
слоями в периоде. В работах [20, 21] исследовалась возможность проявления эффектов динамической
дифракции в ПРИ и ДПИ релятивистских электронов в рассматриваемой трехслойной структуре.

Так как в реальном эксперименте пучок релятивистских электронов обладает определенной угло-
вой расходимостью, то интерес представляет вопрос о влиянии расходимости электронного пучка на
спектрально-угловые плотности ПРИ и ДПИ, генерируемых в рассматриваемой периодической слоистой
среде с тремя слоями на один период. Расходимость электронного пучка может повлиять также на
эффекты динамической дифракции при рассеянии и генерации когерентного рентгеновского излучения
в периодической среде. Настоящая работа посвящена исследованию влияния угловой расходимости
электронного пучка на когерентное рентгеновское излучение релятивистских электронов в рассматрива-
емой периодической слоистой среде с тремя слоями в периоде. Получены и исследованы выражения,
описывающие спектрально-угловые и угловые плотности ПРИ и ДПИ с учетом угловой расходимости
пучка релятивистских электронов.

2. Геометрия процесса излучения. Рассмотрим излучение релятивистских электронов, пересекаю-
щих в геометрии рассеяния Брэгга периодическую слоистую структуру, состоящую из трех различных
чередующихся слоев c толщинами 𝑎, 𝑏 и 𝑐 на периоде𝑇 = 𝑎 +𝑏 + 𝑐 (рис. 1). Диэлектрические восприимчи-
вости атомных веществ, из которых состоят слои, обозначим соответственно: 𝜒𝑎 , 𝜒𝑏 и 𝜒𝑐 . Отражающие
слои периодической слоистой структуры расположены под некоторым углом 𝛿 к поверхности мишени
(рис. 1), что соответствует случаю асимметричного отражения поля излучения (𝛿=0 – частный случай
симметричного отражения).

Рис. 1. Геометрия когерентного рентгеновского излучения в многослойной структуре
Fig. 1. Geometry of coherent X-ray radiation in a multilayer structure
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Введем угловые переменные Ψ, 𝜽 и 𝜽 0 в соответствии с определениями скорости релятивистского
электронаVи единичных векторов:n– внаправленииимпульсафотона, излученного вблизинаправления
вектора скорости электрона, и ng – в направлении рассеяния Брэгга:

V =

(
1 − 1

2
𝛾−2 − 1

2
Ψ2

)
e1 + Ψ, e1Ψ = 0

n =

(
1 − 1

2
𝜃 20

)
e1 + 𝜽 0, e1𝜽 0 = 0, e1e2 = 𝑐𝑜𝑠2𝜃𝐵,

ng =
(
1 − 1

2
𝜃 2

)
e2 + 𝜽 , e2𝜽 = 0, (1)

где 𝜽 – угол излучения, отсчитываемый от оси детектора излучения e2, Ψ – угол отклонения рассматри-
ваемого электрона в пучке, отсчитываемый от оси электронного пучка e1, 𝜽 0 – угол между направлением
распространения падающего фотона и осью e1, 𝛾 = 1/

√
1 −𝑉 2 – Лоренц-фактор электрона. Угловые пере-

менные рассматриваются в виде суммы составляющих параллельных и перпендикулярных плоскости
рисунка: 𝜽 = 𝜽 ∥ + 𝜽⊥, 𝜽 0 = 𝜽 0∥ + 𝜽 0⊥, Ψ = Ψ∥ + Ψ⊥.

Вектор g (рис. 1) аналогичен вектору обратной решетки в монокристалле. Его длина может принимать
значения g = 2𝜋

𝑇
𝑛, 𝑛 = 0,±1,±2, ... . Число 𝑛 определяет гармонику отраженной волны.

Излучаемое релятивистским электроном электромагнитное поле в рентгеновском диапазоне частот
является практически поперечным, значит Фурье-образы напряженностей электрического поля падаю-
щего излучения E𝜔,k и дифрагированного излучения E𝜔,k+g в периодической слоистой среде представим
в виде:

E𝜔,k = 𝐸
(1)
𝜔,ke

(1) + 𝐸 (2)
𝜔,ke

(2) ,

E𝜔,k+g = 𝐸
(1)
𝜔,k+ge

(1)
g + 𝐸 (2)

𝜔,k+ge
(2)
g ,

где векторы e(1) и e(2) перпендикулярны вектору k, а векторы e(1)g и e(2)g перпендикулярны вектору
kg = k + g. Векторы e(2) , e(2)g лежат в плоскости векторов k и kg ( 𝜋-поляризация), а векторы e(1) и e(1)g
перпендикулярны ей ( 𝜎-поляризация). Векторы поляризации имеют вид:

e(1) = eg (1) =
[k, g]
| [k, g] | , e

(2) =
[k, e(1) ]
𝑘

, e(2)g =
[kg, e(1) ]

𝑘g
.

Разложение диэлектрической восприимчивости в рассматриваемой структуре по векторам обратной
решетки имеет вид:

𝜒 (𝜔, r) =
∑︁
g
𝜒g (𝜔) exp(𝑖gr),

где средняя диэлектрическая восприимчивость 𝜒0 и 𝜒g в рассматриваемой периодической структуре
имеет вид:

𝜒0 (𝜔) =
𝑎

𝑇
𝜒𝑎 +

𝑏

𝑇
𝜒𝑏 +

𝑐

𝑇
𝜒𝑐 ,

𝜒g =
1
𝑖𝑔𝑇

(
𝜒𝑐 − 𝜒𝑎 + (𝜒𝑎 − 𝜒𝑏)𝑒𝑖𝑔𝑎 + (𝜒𝑏 − 𝜒𝑐 )𝑒−𝑖𝑔𝑐

)
.

3. Спектрально-угловые и угловые плотности излучений. В работе [19] были получены выраже-
ния, описывающие спектрально-угловые плотности ПРИ, ДПИ и их интерференцию:

𝜔
𝑑3𝑁

(𝑠 )
ПРИ

𝑑𝜔𝑑𝜃⊥𝑑𝜃 ∥
=
𝑒2

𝜋2
Ω (𝑠 )2

(Γ − 𝜒 ′0)2
𝑅
(𝑠 )
ПРИ, (2)

𝑅
(𝑠 )
ПРИ =

�������Ω
(𝑠 )
+

Δ(𝑠 )

1 − exp
(
−𝑖𝐵 (𝑠 )Δ(𝑠 )

+

)
Δ(𝑠 )
+

− Ω (𝑠 )
−

Δ(𝑠 )
1 − exp

(
−𝑖𝐵 (𝑠 )Δ(𝑠 )

−
)

Δ(𝑠 )
−

�������
2

, (3)

𝜔
𝑑3𝑁

(𝑠 )
ДПИ

𝑑𝜔𝑑𝜃⊥𝑑𝜃 ∥
=
𝑒2

𝜋2Ω
(𝑠 )2

(
1
Г
− 1
Г − 𝜒 ′0

)2
𝑅
(𝑠 )
ДПИ, (4)
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𝑅
(𝑠 )
ДПИ = 𝜀2

�������©­­«
exp

(
−𝑖𝐵 (𝑠 ) 𝐾 (𝑠 )

𝜀

)
− exp

(
𝑖𝐵 (𝑠 ) 𝐾 (𝑠 )

𝜀

)
𝑃
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(
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𝜀
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𝜀
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�������
2
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𝑑𝜔𝑑𝜃⊥𝑑𝜃 ∥
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+
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+
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(7)

где приняты обозначения:

Ω (𝑠 )
± = 𝜀

((
𝜎 (𝑠 ) − 𝑖𝜌 (𝑠 )

)
𝑒−𝑖𝑏

(𝑠 )Δ(𝑠 )
∓ + Δ(𝑠 )

±

)
, Γ = 𝛾−2 + (𝜃⊥ − Ψ⊥)2 + (𝜃 ∥ + Ψ∥ )2, Ω (1) = 𝜃⊥ − Ψ⊥,

Ω (2) = 𝜃 ∥ + Ψ∥ , 𝜎
(𝑠 ) = 𝜔𝐿 (𝑠 )ext

(
Γ − 𝑋 ′

0
)
, Δ(𝑠 ) = 𝑃 (𝑠 )

− exp
(
−𝑖𝐵 (𝑠 )Δ(𝑠 )

+

)
− 𝑃 (𝑠 )
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(
−𝑖𝐵 (𝑠 )Δ(𝑠 )

−

)
,

𝑃
(𝑠 )
± = 𝜉 (𝑠 ) ± 𝐾 (𝑠 ) − 𝑖𝜌 (𝑠 ) 1 + 𝜀

2
, Δ(𝑠 )
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𝜀
− 𝜎 (𝑠 ) + 𝑖 𝜌

(𝑠 ) (𝜀 − 1)
2𝜀
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𝑎

𝑇
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𝑏

𝑇
𝜒 ′
𝑏
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𝑇
𝜒 ′𝑐 ,

𝐾 (𝑠 ) =
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𝜉 (𝑠 )2 − 𝜀 − 𝑖𝜌 (𝑠 ) (

(1 + 𝜀)𝜉 (𝑠 ) − 2𝜅 (𝑠 )𝜀
)
− 𝜌 (𝑠 )2
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4
− 𝜅 (𝑠 )2𝜀

)
, 𝜉 (𝑠 ) (𝜔) = 𝜂 (𝑠 ) (𝜔) + 1 + 𝜀

2𝜈 (𝑠 )
,

𝜂 (𝑠 ) (𝜔) =
2𝜋2𝑛2𝐿

(𝑠 )
ext

𝑉 2𝑇 2𝜔𝐵

©­«1 − 𝜔

𝜔𝐵

©­«1 − 𝜃 ∥
√︄
𝑇 2𝜔2

𝐵

𝜋2𝑛2
− 1ª®¬ª®¬ , 𝜀 = sin(𝜃𝐵 − 𝛿)

sin(𝜃𝐵 + 𝛿)
, 𝐵 (𝑠 ) =

1
2 sin(𝛿 + 𝜃𝐵)

𝐿

𝐿
(𝑠 )
ext

,

𝜎 (𝑠 ) =
1

𝜈 (𝑠 )
��𝜒 ′0�� (

𝛾−2 + (𝜃⊥ − Ψ⊥)2 + (𝜃 ∥ + Ψ∥ )2 +
��𝜒 ′0��) , 𝜒 ′0 = 𝜒 ′

𝑏

(
𝛿 ′
𝑎𝑏
𝐼1 + 𝐼2 +

𝛿 ′
𝑎𝑏

𝛿 ′𝑎𝑐
𝐼3

)
. (8)

Параметры динамического рассеяния:

𝜈 (𝑠 ) =
𝐶 (𝑠 )

𝜋𝑛

√︃
(1 − 𝛿 ′

𝑎𝑏
)𝛿 ′1 sin2 (𝐼1𝜋) + (𝛿 ′

𝑎𝑏
− 1)𝛿 ′2 sin2 (𝐼2𝜋) + 𝛿 ′1𝛿 ′2 sin2 (𝐼3𝜋)

𝐼2

���𝑎𝑏𝛿 ′𝑎𝑏 + 1 + 𝑎
𝑏

(
𝑎
𝑐

)−1 𝛿 ′𝑎𝑏
𝛿 ′𝑎𝑐

��� , (9)

𝜌 (𝑠 ) =
𝜋𝑛

𝐶 (𝑠 )

𝐼2

���𝑎𝑏 𝜌𝑎 + 𝜌𝑏 + 𝑎
𝑏

(
𝑎
𝑐

)−1
𝜌𝑐

���√︃
(1 − 𝛿 ′

𝑎𝑏
)𝛿 ′1 sin2 (𝐼1𝜋) + (𝛿 ′

𝑎𝑏
− 1)𝛿 ′2 sin2 (𝐼2𝜋) + 𝛿 ′1𝛿 ′2 sin2 (𝐼3𝜋)

, (10)

𝜅 (𝑠 ) =
𝐶 (𝑠 )

𝜋𝑛

√︃(
𝜌1 sin2 (𝐼1𝜋) + 𝜌2 sin2 (𝐼2𝜋) + 𝜌3 sin2 (𝐼3𝜋)

)
𝐼2

���𝑎𝑏 𝜌𝑎 + 𝜌𝑏 + 𝑎
𝑏

(
𝑎
𝑐

)−1
𝜌𝑐

��� , (11)

где

𝛿 ′1 =
𝛿 ′
𝑎𝑏

𝛿 ′𝑎𝑐
− 𝛿 ′

𝑎𝑏
, 𝛿 ′2 =

𝛿 ′
𝑎𝑏

𝛿 ′𝑎𝑐
− 1, 𝛿 ′

𝑎𝑏
=
𝜒 ′𝑎
𝜒 ′
𝑏

, 𝛿 ′𝑎𝑐 =
𝜒 ′𝑎
𝜒 ′𝑐
, 𝜌𝑎 =

𝜒 ′′𝑎
|𝜒 ′
𝑏
| , 𝜌𝑏 =

𝜒 ′′
𝑏

|𝜒 ′
𝑏
| , 𝜌𝑐 =

𝜒 ′′𝑐
|𝜒 ′
𝑏
| ,

𝜌1 = (𝜌𝑎 − 𝜌𝑏) (𝜌𝑎 − 𝜌𝑐 ), 𝜌2 = (𝜌𝑏 − 𝜌𝑎) (𝜌𝑏 − 𝜌𝑐 ), 𝜌3 = (𝜌𝑐 − 𝜌𝑎) (𝜌𝑐 − 𝜌𝑏),

𝐼1 =

(
1 +

(𝑎
𝑐

)−1
+

(𝑎
𝑏

)−1)−1
, 𝐼2 =

(
1 + 𝑎

𝑏
+ 𝑎

𝑏

(𝑎
𝑐

)−1)−1
, 𝐼3 =

(
1 + 𝑎

𝑐
+ 𝑎

𝑐

(𝑎
𝑏

)−1)−1
. (12)

При 𝑠 = 1 выражения (2)–(8) описывают поля 𝜎-поляризованные, а при 𝑠 = 2 поля 𝜋- поляризованные.
𝜉 (𝑠 ) (𝜔) и 𝜂 (𝑠 ) (𝜔) – спектральные функции, быстро изменяющиеся с изменением частоты излучения 𝜔 в
окрестности частоты Брэгга 𝜔𝐵 . Значение параметра 𝜈 (𝑠 ) показывает степень интерференции рентге-
новских волн, отраженных от различных слоев на периоде рассматриваемой мишени. Если 𝜈 (𝑠 ) ≈ 1, то
интерференция наиболее конструктивна, а при 𝜈 (𝑠 ) ≈ 0 интерференция наиболее деструктивна. Параметр
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𝜌 (𝑠 ) определяет степень фотопоглощения рентгеновского излучения в слоистой среде. Фотопоглощение
излучения в слоях мишени определены отношениями 𝜌𝑎 , 𝜌𝑏 и 𝜌𝑐 . Чем меньше значение параметра 𝜌 (𝑠 ) ,
тем меньше фотопоглощение рентгеновского излучения. Этот параметр может быть представлен как от-

ношение 𝜌 (𝑠 ) =
𝐿
(𝑠 )
𝑒𝑥𝑡

𝐿𝑎𝑏𝑠
длины экстинкции рентгеновского излучения 𝐿 (𝑠 )𝑒𝑥𝑡 в слоистой среде к средней длине

его фотопоглощения 𝐿𝑎𝑏𝑠 =𝑇 /𝜔 (𝑎𝜒 ′′𝑎 + 𝑏𝜒 ′′
𝑏
+ 𝑐 𝜒 ′′𝑐 ). Значение параметра 𝜅 (𝑠 ) определяет расположение в

слоистой среде пучностей стоячей волны, которая образуется в результате интерференции падающей и
дифрагированной волн. Параметр 𝜅 (𝑠 ) принимает значения из промежутка 0 ≤ 𝜅 (𝑠 ) ≤ 1. Если максимумы
пучностей лежат на слое с большей электронной плотностью, то значение параметра 𝜅 (𝑠 ) ближе к нулю,
если максимумы пучностей лежат на слое с меньшей плотностью электронов (меньше фотопоглощение
рентгеновского излучения), то значение параметра 𝜅 (𝑠 ) ближе к единице.

Параметр 𝜀 определяет асимметрию отражения поля электрона и рентгеновского излучения относи-
тельно поверхности мишени. При фиксированном 𝜃𝐵 параметр 𝜀 определяет угол между поверхностью
мишени и отражающими слоями 𝛿 . На рис. 1 показано положительное направление угла 𝛿 . В случае
симметричного отражения поля электрона и рентгеновских волн относительно поверхности мишени,
когда отражающие слои и поверхность мишени параллельны (𝛿 = 0), параметр асимметрии равен
единице 𝜀 = 1.

Спектральная функция 𝑅 (𝑠 )
ПРИ (3) описывает спектр ПРИ в виде вкладов двух ветвей возбужденных

рентгеновских волн ПРИ и их интерференции. Вклад первой и второй ветви в спектр ПРИ существенен,
когда соответственно выполняются приближенные равенства Re

(
Δ(𝑠 )
+

)
≈

(
𝜉 (𝑠 ) (𝜔)+

√︁
𝜉 (𝑠 ) (𝜔)2 − 𝜀

)
/𝜀 −

𝜎 (𝑠 ) = 0, Re
(
Δ(𝑠 )
−

)
≈

(
𝜉 (𝑠 ) (𝜔) −

√︁
𝜉 (𝑠 ) (𝜔)2 − 𝜀

)
/𝜀 − 𝜎 (𝑠 ) = 0. Эти уравнения имеют решение 𝜉 (𝑠 )∗ (𝜔∗) =

√
E + (𝜎 (𝑠 )√E−1)2

2𝜎 (𝑠 ) .
Так как 𝜎 (𝑠 ) > 1 , то в случае симметричного отражения (𝜀 = 1) и при 𝜀 > 1 вклад в ПРИ будет давать

только первая ветвь ПРИ. При этом спектрально-угловая плотность второй ветви ПРИ при условии
𝜀 < 1/𝜎 (𝑠 )2 пренебрежимо мала по сравнению со спектрально-угловой плотностью первой ветви ПРИ при
условии 𝜀 > 1/𝜎 (𝑠 )2. В связи с этим в настоящей работе ограничимся рассмотрением первой ветви ПРИ и
случаем симметричного отражения.

Проинтегрируем выражения (2), (4) и (6) по спектральной функции 𝜂 (𝑠 ) (𝜔), используя соотношение
𝑑𝜔
𝜔

= − 𝑇 2𝜔𝐵

2𝜋2𝑛2𝐿
(𝑠 )
ext
𝑑𝜂 (𝑠 ) (𝜔), следующее из 𝜂 (𝑠 ) (𝜔) (8). Так как спектральный пик ПРИ расположен в интервале

𝜉 (𝑠 ) (𝜔) >
√
𝜀 , то интервал интегрирования для спектра ПРИ и интерференции ПРИ и ДПИ имеет диапазон

𝜂 (𝑠 ) (𝜔) >
√
𝜀 − 1+𝜀

2𝜈 (𝑠 ) . Получим выражения для угловых плотностей ПРИ, ДПИ и их интерференцию:

𝑑2𝑁
(𝑠 )
ПРИ

𝑑𝜃⊥𝑑𝜃 ∥
=

𝑒2𝑇 2𝜔𝐵

2𝜋4𝑛2𝐿
(𝑠 )
ext

Ω (𝑠 )2

(Γ − 𝜒 ′0)2

∞∫
√
𝜀− 1+𝜀

2𝜈 (𝑠 )

�������Ω
(𝑠 )
+

Δ(𝑠 )

1 − exp
(
−𝑖𝐵 (𝑠 )Δ(𝑠 )

+

)
Δ(𝑠 )
+

�������
2

𝑑𝜂 (𝑠 ) , (13)

𝑑2𝑁
(𝑠 )
ДПИ

𝑑𝜃⊥𝑑𝜃 ∥
=

𝑒2𝑇 2𝜔𝐵

2𝜋4𝑛2𝐿
(𝑠 )
ext

Ω (𝑠 )2
(
1
Γ
− 1
Γ − 𝜒 ′0

)2 ∞∫
−∞

𝑅
(𝑠 )
ДПИ𝑑𝜂

(𝑠 ) , (14)

𝑑2𝑁
(𝑠 )
ИНТ

𝑑𝜃⊥𝑑𝜃 ∥
=

𝑒2𝑇 2𝜔𝐵

2𝜋4𝑛2𝐿
(𝑠 )
ext

Ω (𝑠 )2

Γ − 𝜒 ′0

(
1

Γ − 𝜒 ′0
− 1
Γ

) ∞∫
√
𝜀− 1+𝜀

2𝜈 (𝑠 )

𝑅
(𝑠 )
ИНТ𝑑𝜂

(𝑠 ) . (15)

Полученные выражения (16)–(18), (13)–(15) описывают спектрально-угловую плотность излучения,
возбуждаемого в мишени одним электроном, движущимся в пучке под углом Ψ(Ψ⊥,Ψ∥ ) к оси электронно-
го пучка. Чтобы получить характеристики излучения, возбуждаемого всеми электронами расходящегося
пучка, усредним выражения для спектрально-угловых и угловых плотностей ПРИ, ДПИ и их интерферен-
ционного слагаемого по всем его возможным прямолинейным траекториям электрона в пучке. Так как в
основном угловое распределение электронов в пучке близко к нормальному, то усреднение проведем по
функции распределения Гаусса

𝑓 (Ψ) = 1
𝜋Ψ2

0
exp

(
−
Ψ2
⊥ + Ψ2

∥

Ψ2
0

)
.

Параметр Ψ0 будем называть расходимостью пучка излучающих электронов (см. рис. 1). Угол Ψ0
определяет конус, ограничивающийчасть пучка электронов, за пределами которого плотность электронов
уменьшается более чем в 𝑒 раз по сравнению с плотностью на оси пучка. В этом случае выражения для
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усредненных спектрально-угловых и угловых плотностей ПРИ, ДПИ и интерференционного слагаемого,
нормированных на число электронов в пучке, принимают вид:〈
𝜔

𝑑3𝑁
(𝑠 )
ПРИ

𝑑𝜔𝑑𝜃⊥𝑑𝜃 ∥

〉
= 𝑒2

𝜋2
1
𝜋Ψ2

0

∞∫
−∞

∞∫
−∞

Ω (𝑠 )2

(Γ−𝜒 ′0)2

�����Ω (𝑠 )
+

Δ(𝑠 )

1−exp
(
−𝑖𝐵 (𝑠 )Δ(𝑠 )

+

)
Δ(𝑠 )
+

�����2 exp (
−

Ψ2
⊥+Ψ2

∥
Ψ2
0

)
𝑑Ψ⊥𝑑Ψ∥ , (16)

〈
𝑑2𝑁

(𝑠 )
ПРИ

𝑑𝜃⊥𝑑𝜃 ∥

〉
=

𝑒2𝑇 2𝜔𝐵

2𝜋4𝑛2𝐿
(𝑠 )
ext

1
𝜋Ψ2

0

∞∫
−∞

∞∫
−∞

Ω (𝑠 )2

(Γ−𝜒 ′0 )2


∞∫

√
𝜀− 1+𝜀

2𝜈 (𝑠 )

�����Ω (𝑠 )
+

Δ(𝑠 )

1−exp
(
−𝑖𝐵 (𝑠 )Δ(𝑠 )

+

)
Δ(𝑠 )
+

�����2 𝑑𝜂 (𝑠 ) exp
(
−

Ψ2
⊥+Ψ2

∥
Ψ2
0

)
𝑑Ψ⊥𝑑Ψ∥ , (17)

〈
𝜔

𝑑3𝑁
(𝑠 )
ДПИ

𝑑𝜔𝑑𝜃⊥𝑑𝜃 ∥

〉
=
𝑒2

𝜋2𝑅
(𝑠 )
ДПИ

1
𝜋Ψ2

0

∞∫
−∞

∞∫
−∞

Ω (𝑠 )2
(
1
Γ
− 1
Γ − 𝜒 ′0

)2
exp

(
−
Ψ2
⊥ + Ψ2

∥

Ψ2
0

)
𝑑Ψ⊥𝑑Ψ∥ , (18)

〈
𝑑2𝑁

(𝑠 )
ДПИ

𝑑𝜃⊥𝑑𝜃 ∥

〉
=

𝑒2𝑇 2𝜔𝐵

2𝜋4𝑛2𝐿
(𝑠 )
ext

1
𝜋Ψ2

0

∞∫
−∞

∞∫
−∞

Ω (𝑠 )2
(
1
Γ − 1

Γ−𝜒 ′0

)2 [ ∞∫
−∞

𝑅
(𝑠 )
ДПИ𝑑𝜂

(𝑠 )
]
exp

(
−

Ψ2
⊥+Ψ2

∥
Ψ2
0

)
𝑑Ψ⊥𝑑Ψ∥ , (19)

〈
𝜔

𝑑3𝑁
(𝑠 )
ИНТ

𝑑𝜔𝑑𝜃⊥𝑑𝜃 ∥

〉
=
𝑒2

𝜋2
1
𝜋Ψ2

0

∞∫
−∞

∞∫
−∞

Ω (𝑠 )2

Γ − 𝜒 ′0

(
1

Γ − 𝜒 ′0
− 1
Γ

)
𝑅
(𝑠 )
ИНТ exp

(
−
Ψ2
⊥ + Ψ2

∥

Ψ2
0

)
𝑑Ψ⊥𝑑Ψ∥ , (20)

〈
𝑑2𝑁

(𝑠 )
ИНТ

𝑑𝜃⊥𝑑𝜃 ∥

〉
=

𝑒2𝑇 2𝜔𝐵

2𝜋4𝑛2𝐿
(𝑠 )
ext

1
𝜋Ψ2

0

∞∫
−∞

∞∫
−∞

Ω (𝑠 )2

Γ−𝜒 ′0

(
1

Γ−𝜒 ′0
− 1

Γ

) 
∞∫

√
𝜀− 1+𝜀

2𝜈 (𝑠 )

𝑅
(𝑠 )
ИНТ𝑑𝜂

(𝑠 )
 exp

(
−

Ψ2
⊥+Ψ2

∥
Ψ2
0

)
𝑑Ψ⊥𝑑Ψ∥ . (21)

Полученные выражения (16)–(21) для когерентного рентгеновского излучения пучка релятивистских
электронов в периодической слоистой среде с тремя слоями на периоде являются главным результатом
настоящей работы. Они получены с учетом расходимости электронного пучка, учитывают фотопо-
глощение рентгеновского излучения материалом мишени и асимметрию дифракции рентгеновского
излучения на слоистой структуре материала, которая определяется параметром 𝜀. Выражения получены
в явном виде и могут быть использованы для анализа свойств спектрально-угловых характеристик ПРИ,
ДПИ и их интерференции при различных параметрах мишени и электронного пучка. Для примера
проведем некоторые расчеты.

4. Численные расчеты. Для вычисления спектрально-угловых и угловых плотностей излучений
для определенности положим угол между осью пучка релятивистских электронов и отражающими
слоями (угол Брэгга) 𝜃𝐵 = 2.25𝑜 , при этом частота Брэгга 𝜔𝐵 = 8 кэВ. Период слоистой среды равен:
𝑇 = 𝑎 + 𝑏 + 𝑐 = 0.002 мкм. Действительную часть диэлектрической восприимчивости второго слоя
положим при рассматриваемой частоте излучения как у углерода: 𝜒 ′

𝑏
= −2.25 × 10−5. Вычисления

проведем для значения параметра 𝑠 = 1 (𝜎-поляризации) и для первой гармоники дифрагированных
волн 𝑛 = 1. Диэлектрические свойства первого и третьего слоев определим с помощью отношений:
𝛿 ′
𝑎𝑏

=
𝜒 ′𝑎
𝜒 ′
𝑏

= 3, 𝛿 ′𝑎𝑐 =
𝜒 ′𝑎
𝜒 ′𝑐

= 0.7. Толщины слоев определим с помощью отношений: 𝑎
𝑏

= 0.5 и 𝑎
𝑐
= 1

при фиксированном периоде 𝑇 . Фотопоглощение в каждом слое определим с помощью отношений:
𝜌𝑎 =

𝜒 ′′𝑎
|𝜒 ′

𝑏
| = 0.05, 𝜌𝑏 =

𝜒 ′′
𝑏

|𝜒 ′
𝑏
| = 0.01, 𝜌𝑐 =

𝜒 ′′𝑐
|𝜒 ′

𝑏
| = 0.04. В этом случае параметры динамического рассеяния и

поглощения (9), (10) и (11) принимают значения: 𝜈 (1) = 0.373, 𝜅 (1) = 0.4, 𝜌 (1) = 0.032. Параметр асимметрии
равен единице 𝜀 = 1, то есть слои мишени параллельны ее поверхности.

На рис. 2 показаны кривые, построенные по формуле (2), описывающие спектрально-угловые
плотности ПРИ релятивистского электрона с Лоренц-фактором 𝛾 = 500 при фиксированном угле
наблюдения 𝜃⊥ = 7.5 мрад, 𝜃 ∥ = 0, соответствующему максимуму угловой плотности ПРИ (𝜃⊥ =

√︁
𝛾−2 − 𝜒 ′0).

Электрон движется вдоль оси электронного пучка Ψ⊥ = Ψ∥ = 0, при этом расходимость электронного
пучка равна нулю (Ψ0 = 0). Кривые построены для разных толщин мишени 𝐿. Из рис. 2 следует, что для
рассматриваемых параметров мишени насыщение спектрально-угловой плотности ПРИ наступает при
толщинемишени𝐿 = 15мкм.На рис. 3 представленыкривые, построенныепоформуле (13), описывающие
угловые плотности ПРИ для разных толщин мишени 𝐿. Из рисунка следует, что насыщение угловой
плотности ПРИ наступает при толщине мишени 𝐿 = 5 мкм.
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Рис. 2. Спектрально-угловые плотности ПРИ для различных толщин мишени 𝐿 : 1 − 𝐿 = 3 мкм, 2 − 𝐿 = 15 мкм,
3 − 𝐿 = 17 мкм. Параметры: 𝛾 = 500, Ψ0 = 0

Fig. 2. Spectral-angular densities of PXR for different target thicknesses 𝐿 : 1 − 𝐿 = 3 𝜇𝑚, 2 − 𝐿 = 15 𝜇𝑚, 3 − 𝐿 = 17 𝜇𝑚.
Parameters: 𝛾 = 500, Ψ0 = 0

Рис. 3. Угловые плотности ПРИ для различных толщин мишени 𝐿 : 1 − 𝐿 = 1 мкм, 2 − 𝐿 = 5 мкм, 3 − 𝐿 = 6 мкм.
Параметры: 𝛾 = 500, Ψ0 = 0

Fig. 3. Angular densities of PXR for different target thicknesses 𝐿 : 1 − 𝐿 = 1 𝜇𝑚, 2 − 𝐿 = 5 𝜇𝑚, 3 − 𝐿 = 6 𝜇𝑚. Parameters:
𝛾 = 500, Ψ0 = 0

Рис. 4. Спектрально-угловые плотности ПРИ для различной угловой расходимости электронного пучка
Ψ0 : 1 − Ψ0 = 0 мрад, 2 − Ψ0 = 0.1 мрад, 3 − Ψ0 = 0.5 мрад. Параметры: 𝛾 = 500, 𝐿 = 15 мкм

Fig. 4. Spectral-angular densities of PXR for different angular divergences of the electron beam Ψ0 : 1 − Ψ0 = 0 mrad,
2 − Ψ0 = 0.1 mrad, 3 − Ψ0 = 0.5 mrad. Parameters: 𝛾 = 500, 𝐿 = 15 𝜇𝑚

Рассмотрим влияние расходимости электронного пучка Ψ0 на спектрально-угловую плотность ПРИ в
трехслойной структуре. На рис. 4 представлены кривые, построенные по формуле (16), описывающие
угловые плотности ПРИ для различной угловой расходимости электронного пучка Ψ0. Из рисунка следует,
что при увеличении Ψ0 амплитуда спектра ПРИ уменьшается, а ширина спектра возрастает. Расчеты
по формуле (17) показывают, что угловая плотность ПРИ при рассматриваемых на рис. 4 параметрах

ISSN 2687-0959
Прикладная математика & Физика, 2025, том 57, № 4
Applied Mathematics & Physics, 2025, Volume 57, No 4



286 Влияние расходимости электронного пучка на КРИ в периодической слоистой среде . . .

практически не зависит от Ψ0. Расчеты в статье не приведены. Это связано с тем, что угол максимума
угловой плотности ПРИ (𝜃⊥ = 7.5 мрад, 𝜃 ∥ = 0) значительно превышает угловую расходимость пучка
релятивистских электронов Ψ0 = 0.5 мрад.

Рис. 5. Спектрально-угловые плотности ДПИ для различной расходимости Ψ0 : 1 − Ψ0 = 0 мрад, 2 − Ψ0 = 0.1 мрад,
3 − Ψ0 = 0.3 мрад, 4 − Ψ0 = 0.5 мрад. Параметры: 𝛾 = 2000, 𝐿 = 1 мкм, 𝜃⊥ = 0.5 мрад, 𝜃 ∥ = 0

Fig. 5. Spectral-angular densities of DTR for different divergences Ψ0 : 1 − Ψ0 = 0 mrad, 2 − Ψ0 = 0.1 mrad, 3 − Ψ0 = 0.3 mrad,
4 − Ψ0 = 0.5 mrad. Parameters: 𝛾 = 2000, 𝐿 = 1 𝜇𝑚, 𝜃⊥ = 0.5 mrad, 𝜃 ∥ = 0

Рис. 6. Угловые плотности ДПИ для различной расходимости Ψ0 : 1 − Ψ0 = 0 мрад, 2 − Ψ0 = 0.5 мрад, 3 − Ψ0 = 1 мрад.
Параметры: 𝛾 = 2000, 𝐿 = 1 мкм

Fig. 6. Angular densities of DTR for different divergences Ψ0 : 1 − Ψ0 = 0 mrad, 2 − Ψ0 = 0.5 mrad, 3 − Ψ0 = 1 mrad.
Parameters: 𝛾 = 2000, 𝐿 = 1 𝜇𝑚

Рассмотрим влияние угловой расходимости электронного пучка на спектрально-угловую плотность
ДПИ релятивистского электрона с Лоренц-фактором 𝛾 = 2000 при фиксированном угле наблюдения
𝜃⊥ = 0.5 мрад, 𝜃 ∥ = 0, соответствующему максимуму угловой плотности ДПИ (𝜃⊥ = 𝛾−1). Толщину
мишени возьмём 𝐿 = 1 мкм, так как ДПИ формируется на еще более малой длине. На рис. 5 представлены
кривые, построенные по формуле (4). Из рисунка следует, что при увеличении угловой расходимости
электронного пучка до Ψ0 = 0.5 мрад, амплитуда спектра ДПИ уменьшается в 2 раза. Это связано с тем,
что угол максимума ДПИ при рассматриваемой энергии релятивистского электрона 𝜃⊥ = 0.5 мрад равен
угловой расходимости электронного пучка Ψ0. Рассмотрим влияние угловой расходимости электронного
пучка Ψ0 на угловую плотность ДПИ. На рис. 6 представлены кривые, построенные по формуле (19),
описывающие угловые плотности для различных Ψ0 при Лоренц-факторе электронов𝛾 = 2000. Из рисунка
следует, что при такой энергии релятивистских электронов расходимость будет оказывать влияние на
угловую плотность при Ψ0 = 0.5 мрад. На рис. 7 представлены кривые, аналогичные кривым на рис. 6, но
при большем Лоренц-факторе 𝛾 = 10000. Видно, что в этом случае угловая плотность ДПИ чувствительна
к более малой расходимости Ψ0 электронного пучка. Это связано с тем, что при увеличении 𝛾 , угловая
плотность ДПИ смещается в сторону малых углов наблюдения.
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Рис. 7. Угловые плотности ДПИ для различной расходимости Ψ0 : 1 − Ψ0 = 0 мрад, 2 − Ψ0 = 0.05 мрад, 3 − Ψ0 = 1 мрад.
Параметры: 𝛾 = 10000, 𝐿 = 1 мкм

Fig. 7. Angular densities of DTR for different divergences Ψ0 : 1 − Ψ0 = 0 mrad, 2 − Ψ0 = 0.05 mrad, 3 − Ψ0 = 1 mrad.
Parameters: 𝛾 = 10000, 𝐿 = 1 𝜇𝑚

5. Заключение. Развита динамическая теория когерентного рентгеновского излучения пучка реляти-
вистских электронов, пересекающих периодическую слоистую мишень, содержащую три различных
аморфных слоя на периоде, с учетом угловой расходимости электронного пучка. В рамках двухволнового
приближения динамической теории дифракции рентгеновских волн в периодической слоистой среде
получены выражения, описывающие спектрально-угловые и угловые плотности ПРИ, ДПИ и их интерфе-
ренции. Выражения получены с учетом расходимости электронного пучка, учитывают фотопоглощение
рентгеновского излучения материалом мишени и асимметрию дифракции рентгеновского излучения на
слоистой структуре материала, которая определяется параметром 𝜀. Выражения получены в явном виде
и могут быть использованы для анализа свойств спектрально-угловых характеристик ПРИ, ДПИ и их ин-
терференции при различных параметрах мишени и электронного пучка. Проведены численные расчеты,
которые показали, что при определенных условиях амплитуда и ширина спектра ПРИ резко зависят от
расходимости электронного пучка. Однако угловая плотность ПРИ слабо зависит от характерных значе-
ний угловой расходимости электронного пучка, так как максимум угловой плотности ПРИ существенно
превышает ее величину. Угловая плотность ДПИ при Лоренц-факторе𝛾 = 2000 и выше в рассматриваемых
условиях значительно зависит от характерной угловой расходимости электронного пучка.
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