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Аннотация. Целью работы является разработка модифицированной диффузионной модели распространения
информации в социальных сетях на основе одномерного параболического уравнения. Ключевым отличием модели
является строгое физическое обоснование ее параметров, что позволяет перейти от качественных к количественным
оценкам. Информация рассматривается как непрерывная функция числа пользователей, распространяющих новость.
Для адекватного учета дискретной структуры социального графа применяется метод интегрального осреднения.
Новизна модели заключается в явном задании распределенных источников информации с помощью свободного
члена, включающего пороговую функцию Хевисайда, что отражает реальный механизм активации пользователей в
качестве вторичных источников. Численные эксперименты проведены на реальных данных Twitter, касающихся
распространения новости об открытии бозона Хиггса. Результаты расчетов демонстрируют высокую точность
модели: нормализованная среднеквадратическая ошибка между модельными и экспериментальными данными
составила 0,7%. Полученные результаты подтверждают гипотезу о применимости законов физической диффузии
для описания информационных потоков.
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about the applicability of physical diffusion laws for describing information flows in social networks.
Keywords:Mathematical Modeling, Social Networks, Information Diffusion
Acknowledgements: The work was supported by the Azov-Black Sea Mathematical Center (Agreement № 075-02-2025-1608
of February 27, 2025).
For citation: Tolstykh MA. Mathematical Modeling of Information Diffusion in Social Network. Applied Mathematics &
Physics. 2025;57(4):272–278 (In Russ.). DOI 10.52575/2687-0959-2025-57-4-272-278 EDN NBUBRS

© Толстых М. А., 2025

http://orcid.org/0009-0003-3406-5056
http://orcid.org/0009-0003-3406-5056


Толстых М. А. 273

1. Введение. Моделирование распространения информации в социальных сетях – актуальная задача,
обусловленная стремительным ростом влияния онлайн-платформ на общественное мнение, политиче-
ские процессы, экономику и др. Первые работы, заложившие основу для понимания социальных сетей,
такие как исследование Грановеттера 1978 года [1], фокусировались на структуре организационных сетей.
Однако современные онлайн-социальные сети представляют собой гораздо более сложные системы,
характеризующиеся разнообразием структур, алгоритмов и форм взаимодействия пользователей. Рас-
пространение информации в таких сетях базируется как на графовой структуре сети (распространение от
узла к узлу через подписки, дружеские связи и т. д.), так и на содержании информации (независимые
источники информации, плагиат). Этот сложный процесс может быть описан с помощью различ-
ных математических моделей, которые позволяют изучать динамику распространения информации,
прогнозировать её охват и выявлять ключевые влияющие факторы.

Необходимо отметить, что «информация», «репост», «новость» – это эквивалентные понятия
в социальных сетях. Количество информации в социальной сети тождественно равно количеству
экземпляров одной новости (репостов, ретвитов).

2. Обзор моделей распространения информации в социальных сетях. Наиболее популярными
моделями распространения информации в социальных сетях (далее – РИСС) являются эпидемиологиче-
ские, каскадные, пороговые, диффузионные модели и модели на основе машинного обучения. Выбор
наиболее подходящей модели зависит от конкретных целей исследования и доступных данных. Часто
используется комбинированный подход, объединяющий преимущества различных моделей.

Пороговые модели [2] предполагают, что пользователь принимает информацию только тогда, когда
количество или интенсивность сигналов от его окружения превышает определенный порог. Эти модели
часто используются для изучения коллективного поведения. Для линейной пороговой модели:∑︁

𝑣∈𝑁 (𝑢 )
𝑤𝑢𝑣 ≥ 𝜃𝑢,

где 𝑁 (𝑢) – соседи узла 𝑢, 𝑤𝑢𝑣 – вес влияния узла 𝑣 на узел 𝑢, 𝜃𝑢 – порог активации узла 𝑢. Эти модели
учитывают влияние социального давления, подходят для анализа критических точек в распространении
информации, однако не учитывают динамику процесса распространения информации.

Каскадные модели [2] описывают распространение информации как последовательность активаций
узлов. В модели независимых каскадов (ICM) каждый узел 𝑣 имеет вероятность 𝑝𝑢𝑣 активировать
соседний узел 𝑢. Процесс продолжается до тех пор, пока не будут активированы все доступные узлы.
Такиемодели учитывают структуру сети, однако не учитывают динамику и сильно упрощают социальные
взаимодействия.

Эпидемиологические модели [3], такие как SIR (Susceptible-Infected-Recovered), заимствованы из
биологии и описывают распространение информации аналогично распространению заболеваний. В
этих моделях множество пользователей (популяция) делится на группы: S – восприимчивые пользова-
тели, которые еще не получили информацию; I – инфицированные пользователи, распространяющие
информацию; R – выздоровевшие пользователи, которые больше не распространяют информацию.

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼, 𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼, 𝑑𝑅

𝑑𝑡
= 𝛾𝐼,

где 𝛽 – скорость передачи информации, 𝛾 – скорость «выздоровления».
Данные модели просты и наглядны, учитывают динамику распространения информации, однако

не учитывают структуру сети и содержание информации, предполагают однородность популяции, что
редко выполняется в реальности.

Модели на основе машинного обучения [4] используют данные для обучения и прогнозирования.
Графовые нейронные сети используют структуру социальной сети для прогнозирования распространения
информации, учитывают связи между узлами и их свойства. Рекуррентные нейронные сети подходят для
моделирования временных зависимостей в распространении информации. Модели на основе обучения
с подкреплением оптимизируют стратегии распространения информации, учитывая динамику сети.
Такие модели обладают высокой точностью при наличии больших объемов данных, учитывают сложные
нелинейные зависимости, однако требуют больших вычислительных ресурсов и данных, сложны в
интерпретации (проблема «черного ящика» ).

Предложенные в 2012 году диффузионные модели [5], такие как линейная диффузионная, модель диф-
фузионной логистики, описывают распространение информации как процесс, аналогичный диффузии
вещества в среде. Их преимущества: универсальность и гибкость, возможность учета пространственных
и временных факторов, интерпретируемость. Это важно для создания моделей, не привязанных к специ-
фическим алгоритмам конкретных социальных сетей и способных адаптироваться к изменениям в их
функционировании [6]. Однако предложенные модели требуют сложных вычислений, идентификации
параметров, а также неясно, какой смысл относительно социальной сети несут входящие в данные
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модели параметры. Эти модели могут быть улучшены, если их параметры приобретут физическую
интерпретацию.

Параметры моделей в ранних работах [4] приближались некоторыми полиномами с эвристически
подобранными коэффициентами, что давало приблизительное соответствие модели реальным даннымиз
социальных сетей. Предполагалось, что коэффициент диффузии 𝑝 (𝑥) – это некоторая экспоненциальная
функция, в некоторых работах 𝑝 (𝑥) выносилось за знак дифференциала, что некорректно, однако в
дальнейших работах авторов моделей эта неточность была устранена. Были попытки идентификации
оптимальных параметров диффузионных моделей в виде полиномов [7], а также решалась задача об
источнике [8, 9]. Также для соответствия закону Фика данных моделей правая часть домножалась на
состояние модели 𝑣 , на логистическую функцию, зависящую от 𝑣 . Это обеспечивало соответствие модели
закону Фика, однако искажало смысл входящих в модель параметров – было невозможно дать им
какую-либо количественную оценку.

В настоящей работе предлагается модификация существующей диффузионной модели распростране-
ния информации в социальных сетях, представленной в [2], которая учитывает эти аспекты и позволяет
решать широкий круг задач, включая прогнозирование распространения информации, выявление
лидеров мнений и обнаружение экстремистских кластеров.

3. Моделирование распространения информации на основе уравнения диффузии. Известно,
что распространение информации в сети происходит в основном под действием градиента информа-
ции, из областей, где информации больше, в области, где ее меньше. Подобные процессы в физике
описываются законом Фика диффузии молекул в среде. Предлагается гипотеза, что распространение
информации в глобальных социальных сетях подчиняется физическим законам диффузии. Подобный
подход, связывающий динамические процессы в сложных сетях с формализмом теоретическойфизики ис-
пользовался в работе [10]. Информация трактуется как непрерывная функция количества распределённых
пользователей, участвующих в распространении конкретной новости с течением времени.

Соответствующее параболическое уравнение диффузии имеет вид:

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

− 𝜕

𝜕𝑥

(
𝑝
𝜕𝑣 (𝑥, 𝑡)
𝜕𝑥

)
− 𝜙 = 0, 𝑥, 𝑡 ∈ Ω = (𝑥𝑎, 𝑥𝑏) × (𝑡0, 𝑡1) , (1)

где 𝑡 – время; 𝑥 – расстояние в графе сети, на которое распространяется информация, например, в
виде репостов какой-либо новости; 𝑣 (𝑥, 𝑡) – количество репостов (количество активных пользователей)
рассматриваемой новости к моменту 𝑡 в точке 𝑥 ; 𝑝 – коэффициент диффузии информации, который
определяет степень проникновения новости в более глубокие слои социальной сети, возможно 𝑝 (𝑥);
свободный член 𝜙 (𝑥, 𝑡) – распределённые источники информации.

Здесь необходимо обсудить, что собой представляет координата 𝑥 . В реальной сети – это расстояние
в графе, измеряемое минимальным набором рёбер 𝑖 = 1, 2, 3, . . . , по которым может быть передана
информация из источника с номером 𝑖 = 0. То есть расстояние дискретно, 𝑥 = 𝑥𝑖 = 𝑖 . Физическая
диффузия (1) предполагает непрерывность пространства. Поэтому, моделируя поток информации
уравнением (1), нам придётся результаты диффузии отображать в дискретное пространство {𝑥𝑖 }∞𝑖=0. Это
можно делать интегральным осреднением (математическим ожиданием) состояния новости на 𝑖-том
отрезке единичной длины в виде:

𝑣𝑖 (𝑡) =
∫ 𝑥𝑖

𝑥𝑖−1

𝑣 (𝑥, 𝑡)𝑑𝑥, 𝑖 = 1, 2, 3, . . . . (2)

Данная проблема перехода между дискретными сетевыми структурами и их непрерывными приближе-
ниями рассматривается, например, в работе [11].

В данной работе уравнение (1) будем дополнять следующими граничными и начальными условиями:

𝑣 = 1 на Γ𝑎 = 𝑥𝑎 × (𝑡0, 𝑡1),
𝜕𝑣 (𝑥, 𝑡)
𝜕𝑥

= 0 на Γ𝑏 = 𝑥𝑏 × (𝑡0, 𝑡1), 𝑣 = 0 на Γ0 = (𝑥𝑎, 𝑥𝑏) × 𝑡0 . (3)

Одна новость зарождается одним автором в момент 𝑡0 на левой границе Γ𝑎 . Справа на границе Γ𝑏
поток новости равен нулю к моменту 𝑡1, когда стабилизируется процесс насыщения сети новостью.
Предполагается, что изначально рассматриваемой новости в сети нет. При этом полагается, что до точки
𝑥𝑏 информация также не доходит. Возможно рассмотрение и других граничных и начальных условий.

Свободный член в уравнении (1)

𝜙 (𝑥, 𝑡) = 𝑟 (𝑡)ℎ(𝑥)Θ(𝑣 − 𝜀),

где 𝑟 (𝑡) – средняя скорость изменения активности пользователей, ℎ(𝑥) – максимальное количество
активных пользователей, участвующих в распространении новости, вплоть до насыщения сети. Функция

ISSN 2687-0959
Прикладная математика & Физика, 2025, том 57, № 4
Applied Mathematics & Physics, 2025, Volume 57, No 4



Толстых М. А. 275

𝜙 (𝑥, 𝑡) – это распределённый источник информации в виде действия активных пользователей сети,
которые становятся вторичными источниками рассматриваемой новости. Тэта-функция

Θ(𝑣 − 𝜀) =
{
1, если 𝑣 (𝑥, 𝑡) ≥ 𝜀;
0, иначе.

задаёт порог 𝜀 > 0, который предотвращает «зарождение» информации в каждой точке 𝑥 сети, пока до
активных пользователей в точке 𝑥 не дошла новость, т. е. не дошёл фронт потока новости высотой 𝜀.

В рассматриваемоймодели (1) её параметры приобретают не только физический смысл, но и понятные,
наглядные количественные значения. Разработка подобных интерпретируемых моделей, в противовес
«черным ящикам», выделяется как одно из ключевых направлений в моделировании социальных
сетей [6, 12].

Максимальное количество активных пользователей ℎ(𝑥) характеризует пропускную способность
кластера сети, где информация зародилась, была активно поддержана заинтересованной цепочкой
пользователей и, достигнув пика распространения, стабилизировалась так, что поток информации вне
кластера интересов прекратился. При этом каждый активный пользователь имеет по одному экземпляру
новости. Это означает, что

ℎ(𝑥) =max
𝑡
𝑣 (𝑥, 𝑡). (4)

Если активные участники не удаляют репосты новости, то, очевидно, ℎ(𝑥) = 𝑣 (𝑥, 𝑡1). По дискретному
значению функции ℎ𝑖 (𝑥) можно судить о количестве узлов кластера, характеризующих глубину и
ширину проникновения информации в сеть, можно судить о заинтересованности участников кластера в
текущем типе новости, т. е. выделять группы по интересам.

Получается, что распределённые в кластере источники вторичной новостной информации, во-
первых, заранее (к моменту 𝑡0) известны и их количество равно ℎ(𝑥). Во-вторых, источники начинают
работать после прихода к ним количества новостей 𝑣 ≥ 𝜀. В-третьих, мощность источников определяется
параметром 𝑟 (𝑡), при этом сначала мощность (интерес к новости) постепенно возрастает до максимума,
далее убывает до значения, обеспечивающего стабилизацию процесса распространения новости.

Функция 𝑟 (𝑡) имеет размерность обратную времени и характеризует среднюю в пространстве интен-
сивность источников ℎ, т. е. активность заинтересованных пользователей кластера. Из уравнения (1)
следует

𝜕𝑣𝑐𝑝 (𝑡)
𝜕𝑡

= 𝑟 (𝑡)ℎ𝑐𝑝 ,

где ℎ𝑐𝑝 = 1
𝑥𝑏−𝑥𝑎

∫ 𝑥𝑏
𝑥𝑎

ℎ(𝑥)𝑑𝑥, 𝑣𝑐𝑝 (𝑡) = 1
𝑥𝜀−𝑥𝑎

∫ 𝑥𝜀
𝑥𝑎
𝑣 (𝑥, 𝑡)𝑑𝑥 . Здесь 𝑥𝜀 (𝑡)

𝑡→𝑡1−→ 𝑥𝑏 – точка фронта потока новости
в сети. Проинтегрируем по времени предыдущее выражение:∫ 𝑡1

𝑡0

𝑟 (𝑡)𝑑𝑡 = 1
ℎ𝑐𝑝

𝑣𝑐𝑝 (𝑡1).

Здесь было учтено, что 𝑣𝑐𝑝 (𝑡0) = 0. Если учесть (4) в последний момент времени, когда 𝑥𝜀 = 𝑥𝑏 , то
𝑣𝑐𝑝 (𝑡1) = ℎ𝑐𝑝 и мы получим условие нормировки функции активности пользователей:∫ 𝑡1

𝑡0

𝑟 (𝑡)𝑑𝑡 = 1. (5)

Таким образом, функция 𝑟 (𝑡) представляет собой долю от общего количества пользователей, которые
будут делиться информацией, в единицу времени.

Обсудим коэффициент диффузии 𝑝 . Он влияет на накопление новостной информации всеми
активными пользователями в каждой точке 𝑥 с течением времени 𝑡 . С точки зрения физики, с одной
стороны, малое значение коэффициента диффузии приводит к медленному проникновению субстанции
в среду, с другой стороны, – к высокой концентрации диффундирующей субстанции возле источника
диффузии. В нашем случае мы имеем много источников – это единичный источник на границе Γ𝑎 и
распределённые источники переменной мощности вдоль всего кластера сети.

Из натурных наблюдений известно [13], что распределение 𝑣 (𝑥𝑖 , 𝑡 ≈ 𝑡1) имеет максимум в нескольких
«шагах» 𝑖 = 2 − 3 от первоисточника 𝑥𝑎 и затяжной «хвост» с 𝑣 → 0 в конце кластера 𝑥𝑏 . Как на это может
влиять коэффициент диффузии?

Если предположить, что коэффициент диффузии не постоянный в пространстве, т. е. 𝑝 = 𝑝 (𝑥), то
уравнение (1) можно записать в виде:

𝜕𝑣

𝜕𝑡
− 𝑝 𝜕

2𝑣

𝜕𝑥2
= 𝜙 + 𝜕𝑝

𝜕𝑥

𝜕𝑣

𝜕𝑥
на Ω. (6)
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Поскольку 𝜕𝑣
𝜕𝑥

≠ 0, то даже при 𝜙 = 0 справа в (6) будет присутствовать ненулевой источник (сток)
концентрации новости и стабилизировать поток информации будет крайне сложно. Возле Γ𝑏 для
формирования «хвоста» необходимо 𝜕𝑣

𝜕𝑥
< 0. С другой стороны, чтобы там и 𝑣 → 0 необходимо

существенно усилить диффузию т. е. необходимо 𝜕𝑣
𝜕𝑥

> 0 для стока (при этом 𝜕𝑝

𝜕𝑥
𝜕𝑣
𝜕𝑥

< 0) лишней
концентрации новости. Это значит, что необходимо 𝑝 (𝑥 ≈ 𝑥𝑏) → ∞. Такое поведение коэффициента
диффузии кажется экзотическим, поэтому далее примем 𝑝 (𝑥) = 𝑝 и уравнение (1) примет вид:

𝜕𝑣

𝜕𝑡
= 𝑝

𝜕2𝑣

𝜕𝑥2
= 𝑟ℎΘ(𝑣 − 𝜀) на Ω. (7)

4. Тестовые расчеты моделирования потока информации. Исследуем поведение модели (7) и
оценим насколько реалистично она может описать реальные процессы распространения информации в
социальной сети. Рассмотрим экспериментальные данные сети twitter.com [13] о распространенииновости
об открытии бозона Хиггса. Наблюдаемое состояние информации достигло насыщения новостью и
приняло значения 𝑣𝑖 (𝑡1) = {1, 6370, 136366, 167164, 65276, 396, 38} в узлах 𝑖 = 0 . . . 6 к моменту 𝑡1 = 175 (часов).

Для уравнения (7) с граничными условиями (3) были подобраны следующие коэффициенты модели:
коэффициент диффузии информации 𝑝 = 0.0001;ℎ(𝑥) = 𝑣 (𝑡1) – пропускная способность; скорость реакции
пользователей в виде гауссовой функции 𝑟 (𝑡) = 0.018𝑒

(𝑡−87.5)2
1936 ; порог был принят 𝜀 = 0.001.

На рис. 1 (а) сплошная линия – это функция ℎ(𝑥), полученная кубической интерполяцией по
вершинам дискретных наблюдений в виде столбцов. На рис. 1 (б) показана функция 𝑟 (𝑡) с пиком
активности пользователей в момент 𝑡 ≈ 87 (часов). Эти параметры подбирались с учётом условий (4), (5).
Расчёт параболического уравнения (7) производился по неявной конечно-разностной схеме Кранка –
Николсона на сетке {𝑥𝑖 = 𝑥𝑎 + 𝑖Δ𝑥 , 𝑖 = 0 . . . 𝑛, Δ𝑥 =

𝑥𝑏−𝑥𝑎
𝑛

}, {𝑡 𝑗 = 𝑡0 + 𝑗Δ𝑡 , 𝑗 = 0 . . .𝑚, Δ𝑡 = 0.5Δ𝑥2

𝑝
}, 𝑛 = 60,

𝑚 = 350.

а) ℎ(𝑥) б) 𝑟 (𝑡)

Рис. 1. Подобранные функции: (а) пропускная способность ℎ(𝑥); (б) функция активности 𝑟 (𝑡)
Fig. 1. Fitted functions: (a) capacity ℎ(𝑥); (b) activity function 𝑟 (𝑡)

На рис. 2 показанырезультатымоделирования. Сплошная линия – это полученное значение состояния
𝑣 (𝑥, 𝑡1) модели (7) к моменту стабилизации потока информации. Диаграмма на том же рисунке – это
дискретное представление информации в графе кластера сети, полученное осреднением, согласно
формуле (2). Как видно, дискретизация состояний модели в точках 𝑖 визуально совпадает с реальными
данными.

Рис. 2. Моделирование состояния информации в сети в момент 𝑡1
Fig. 2. Simulation of the information state in the network at time 𝑡1
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Значения смоделированного состояния 𝑣𝑖 (𝑡1) = {1, 6514, 134051, 165262, 64525, 498, 45}, нормализован-
ная среднеквадратическая ошибка 0, 7%. Это свидетельствует о высокой достоверности модели (7) и
справедливости изначальной гипотезы о физических принципах диффузии информации в социальной
сети.

Для практического использования диффузионной модели (7) необходимо автоматизировать процесс
подбора достоверных коэффициентов модели. Это может реализовываться с помощью параметрической
идентификации оптимальных значений коэффициентов. Для её решения целесообразно использовать
методы оптимизации с регулируемымнаправлением спуска [14], которыемогут обеспечить равномерную
сходимость к оптимальным значениям функций ℎ(𝑥) и 𝑟 (𝑡) за конечное, небольшое число итераций.
Постановка и решение подобной задачи для линейной диффузионной модели имеется в работе [15].
Стоит отметить, что аналогичные подходы к решению коэффициентных обратных задач, основанные на
сведении к задаче оптимизации и применении градиентных методов с использованием сопряженных
задач, успешно применяются и в других областях, например, в иммунологии и эпидемиологии [16].

5. Заключение. В предложенной модели диффузии информации, в отличие от существующих
диффузионных моделей, параметры имеют физическую интерпретацию, что позволяет оценивать
источник информации и кластер сети вокруг него, а также позволяет перейти от качественных к
количественным оценкам, значимым для прикладного анализа. Также получено условие нормировки
функции активности пользователей для предложенной модели.

Результаты тестовых расчётов на реальных данных показали возможность моделирования с высокой
точностью. Это подтверждает правомерность исходной гипотезы о применимости законов физической
диффузии к описанию информационных потоков в социальных сетях.
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