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Аннотация. В данной работе приводится аналог теоремы о среднем для субгармонических функций в следующей
ситуации: вместо области пространства R𝑑 рассматривается стратифицированное множество Ω, а вместо классиче-
ского лапласиана – «стратифицированный». Ранее похожий результат был получен для так называемого мягкого
лапласиана, максимально приближенного по своим свойствам к классическому. Здесь же мы приводим резуль-
тат – аналог теоремы о среднем, – имеющий место для всех стратифицированных лапласианов. Теорема о среднем
играет важную роль при обсуждении качественных свойств субгармонических функций на стратифицированных
множествах и в вопросах разрешимости на них задачи Дирихле.
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Abstract. In this paper, an analogue of the mean value theorem for subharmonic functions is presented in the following
setting: instead of a domain in R𝑑 , a stratified set Ω is considered, and instead of the classical Laplacian, a "stratified"one is
used. Previously, a similar result was obtained for the so-called soft Laplacian, whose properties are as close as possible to the
classical one. Here, we present a result—an analogue of the mean value theorem—that holds for all stratified Laplacians. The
mean value theorem plays an important role in discussing the qualitative properties of subharmonic functions on stratified
sets and in addressing the solvability of the Dirichlet problem on them.
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1. Основные понятия и вспомогательные факты.
1.1. Стратифицированное множество. Общее определение стратифицированного множества,

лапласиана на нем и т. п. можно найти в [1] (см. также [2], [3]). В данной работе мы ограничиваемся
случаем, когда все страты, кроме граничных (подробности ниже), являются плоскими, что упрощает
описание основных понятий. Плоской стратой 𝜎𝑘 𝑗 мы называем открытое связное подмножество
𝑘-мерного линейного многообразия 𝐿 пространства R𝑑 в топологии, индуцированной на 𝐿 из R𝑑 .

Множество Ω ⊂ R𝑑 называется стратифицированным, если оно связно и состоит из конечного числа
страт 𝜎𝑘 𝑗 различных размерностей (здесь 𝑘 – размерность, а 𝑗 служит для автономной нумерации
страт фиксированной размерности), имеющих компактные замыкания и примыкающих друг к другу в
соответствии со следующими требованиями:
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• пересечение замыканий 𝜎𝑘 𝑗 ∩ 𝜎𝑚𝑖 различных страт 𝜎𝑘 𝑗 , 𝜎𝑚𝑖 либо пусто, либо состоит из некоторых
страт;

• граница 𝜕𝜎𝑘 𝑗 = 𝜎𝑘 𝑗\𝜎𝑘 𝑗 либо пуста (так будет, например, при 𝑘 = 0), либо состоит из страт.

Строго говоря, стратифицированное множество – это тройка (Ω,S, 𝜑), в которой S – фиксированный
набор страт, представляющих множество Ω, а 𝜑 – отображение, отождествляющее границы некоторых
страт (способ склейкиΩ из элементов набораS), номыбудемназывать стратифицированныммножеством
само Ω, считая S и 𝜑 фиксированными.

1.2. Стратифицированная мера. Пусть 𝜔 ⊂ Ω таково, что каждое пересечение 𝜔 ∩ 𝜎𝑘 𝑗 измеримо по
Лебегу. Нетрудно показать, что семейство таких подмножеств образует 𝜎-алгебру Σ в Ω. Меру любого
множества 𝜔 ∈ Σ определим формулой

𝜇 (𝜔) =
∑︁
𝜎𝑘 𝑗

𝜇𝑘 (𝜔 ∩ 𝜎𝑘 𝑗 ),

где 𝜇𝑘 – обычная 𝑘-мерная мера Лебега. Определенную таким образом меру будем называть стратифици-
рованной. Легко проверить, что она удовлетворяет стандартным аксиомам меры.

Понятие измеримой функции определяется стандартно. Можно показать, что интеграл Лебега
измеримой функции 𝑓 по измеримому множеству 𝜔 ⊂ Ω сводится к сумме обычных интегралов Лебега
по фрагментам 𝜔 ∩ 𝜎𝑘 𝑗 . В частности, при 𝜔 = Ω имеем∫

Ω

𝑓 𝑑𝜇 =
∑︁
𝜎𝑘 𝑗

∫
𝜎𝑘 𝑗

𝑓 𝑑𝜇𝑘 .

1.3. Дивергенция и лапласиан на стратифицированном множестве. На сегодняшний день
наиболее распространёнными методами определения гармонических функций на сложных множествах,
как правило метрических пространствах с мерой, согласованной с метрикой, являются следующие:

• Гармоническими называют функции, удовлетворяющие равенству среднего:

𝑢 (𝑋 ) = 1
𝜇 (𝐵𝑟 (𝑋 ))

∫
𝐵𝑟 (𝑋 )

𝑢 𝑑𝜇.

• Гармоническими называют функции, минимизирующие специальным образом определенные
интегралы Дирихле.

Первый подход реализован, например, в [4]. Он хорошо приспособлен к изучению качественных
свойств гармонических функций, но с ними не всегда можно связать какой-нибудь дифференциальный
оператор, похожий на «настоящий» лапласиан.

Второй подход, реализованный, например, в [5], на наш взгляд, является более естественным, но
изучение качественных свойств соответствующих гармонических функций оказывается весьма сложным.

В данной работе мы реализуем второй подход, но вместо абстрактного метрического пространства со
специальной мерой, удовлетворяющей принципу удвоения, рассматриваем стратифицированные мно-
жества, наделенные стратифицированной мерой. Это открывает возможность построения полноценной
качественной теории соответствующих гармонических функций; примеры таковой можно найти в [6, 7].

Начнём с определения дивергенции касательных векторных полей.
Всюду далее Ω считается представленным в виде дизъюнктного объединения Ω = Ω0 ∪ 𝜕Ω0, где Ω0 –

открытое, связное подмножество Ω, составленное из его страт и плотное в Ω, т. е. Ω0 = Ω. Все только что
упомянутые топологические понятия относятся к топологии Ω, индуцируемой на него стандартной
топологией R𝑑 . Множество 𝜕Ω0 = Ω\Ω0 оказывается при этом топологической границей Ω0. Формально
допускается случай, когда Ω0 = Ω, 𝜕Ω0 = ⊘, но обычно предполагается Ω0 ≠ Ω.

Выше уже отмечалось, что мы намерены рассматривать случай, когда все страты, не считая граничных,
плоские. Граничные страты из 𝜕Ω0 будем считать гладкими многообразиями. Рис. 1. иллюстрирует
возможное геометрическое устройство стратифицированного множества; на нем граничные страты
выделены жирным.

Векторное поле ®𝐹 в R𝑑 назовём касательным к Ω0, если для любой страты 𝜎𝑘 𝑗 ⊂ Ω0 и любой
точки 𝑋 ∈ 𝜎𝑘 𝑗 вектор ®𝐹 (𝑋 ) принадлежит касательному пространству 𝑇𝑋𝜎𝑘 𝑗 , понимаемому в обычном
дифференциально-геометрическом смысле. При 𝑘 = 0 считается, что 𝑇𝑋𝜎𝑘 𝑗 состоит из одного лишь
нуль-вектора.
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Рис. 1. Стратифицированное множество
Fig.1. Stratified set

Дивергенция касательного векторного поля в точке 𝑋 ∈ 𝜎𝑘 𝑗 определяется следующим выражением:

∇ · ®𝐹 (𝑋 ) = ∇𝑘 · ®𝐹 (𝑋 ) +
∑︁

𝜎𝑘+1𝑖≻𝜎𝑘 𝑗

®𝐹 (𝑋 + 0 · ®𝜈𝑖 ) · ®𝜈𝑖 ,

где ∇𝑘 · ®𝐹 – классическая 𝑘-мерная дивергенция сужения векторного поля ®𝐹 на 𝜎𝑘 𝑗 ; ®𝜈𝑖 – единичная нормаль
к 𝜎𝑘 𝑗 в точке 𝑋 , направленная внутрь страты 𝜎𝑘+1𝑖 (см. рис. 1.), примыкающей к 𝜎𝑘 𝑗 (факт примыкания
𝜎𝑘+1𝑖 к 𝜎𝑘 𝑗 выражается записью вида 𝜎𝑘+1𝑖 ≻ 𝜎𝑘 𝑗 ). Обозначение вида ®𝐹 (𝑋 + 0 · ®𝜈𝑖 ) служит для записи
предельного значения вектора ®𝐹 (𝑌 ), когда 𝑌 , двигаясь по страте 𝜎𝑘+1𝑖 , стремится к 𝑋 .

Введенное нами понятие дивергенции является точным аналогом классической дивергенции, опреде-
ляемой как плотность потока векторного поля; только в нашем случае плотность потока нужно относить
к стратифицированной мере, упомянутой выше.

Множество векторных полей, для которых эта дивергенция существует, обозначается ®𝐶1 (Ω0). В каче-
стве достаточных условий существования дивергенции годятся следующие:

• сужения ®𝐹 на страты 𝜎𝑘 𝑗 ⊂ Ω0 принадлежат классу 𝐶1;

• эти сужения допускают продолжения по непрерывности в (𝑘 − 1)-мерные страты 𝜎𝑘−1𝑖 ≺ 𝜎𝑘 𝑗 при
𝑘 > 0.

Пусть 𝑢 : Ω0 → R – непрерывная скалярная функция. Если через ∇𝑢 обозначить векторное поле на Ω0,
составленное из градиентов сужений 𝑢 на страты 𝜎𝑘 𝑗 ⊂ Ω0, и если ∇𝑢 ∈ ®𝐶1 (Ω0) (множество функций 𝑢,
обладающих такими свойствами, обозначается 𝐶2 (Ω0)), то можно определить оператор Δ𝑢 = ∇ · (∇𝑢),
являющийся аналогом классического лапласиана. Более того, можно определить целый класс операторов
вида ∇ · (𝑝∇𝑢), где 𝑝 – так называемая стратифицированная константа, равная на каждой страте из Ω0
либо тождественной единице, либо нулю. При этом всегда предполагается, что 𝑝 = 1 на свободных
стратах; так мы называем страты, не являющиеся граничными для других страт. В частности, если 𝑝 = 1
только на таких стратах, то соответствующий оператор называется мягким лапласианом, а если 𝑝 ≡ 1 на
Ω0, то соответствующий оператор называется жёстким лапласианом.

В данной работе мы, ради простоты формул, ограничимся случаем жёсткого лапласиана, но приводи-
мые нами результаты имеют место и для всех промежуточных лапласианов.

1.4. Основные интегральные тождества. Ключевую роль в наших рассмотрениях играют следую-
щие интегральные тождества. Их обоснования можно найти в [1].

Теорема 1.1 (Теорема о дивергенции). Пусть ®𝐹 ∈ ®𝐶1 (Ω0). Тогда∫
𝜕Ω0

( ®𝐹 )𝜈 𝑑𝜇 = −
∫
Ω0

∇ · ®𝐹 𝑑𝜇,

где ( ®𝐹 )𝜈 =
∑

𝜎𝑘+1𝑖≻𝜎𝑘 𝑗 ,

𝜎𝑘+1𝑖⊂Ω0

®𝐹 (𝑋 + 0 · ®𝜈𝑖 ) · ®𝜈𝑖 . Знак «–» в формуле связан с тем, что здесь мы используем в граничных

стратах внутренние нормали.
В следующей теореме 𝐶1 (Ω0) означает множество непрерывных на Ω0 функций, непрерывно диффе-

ренцируемых на каждой страте, а 𝜈 представляет собой единичный вектор внутренней нормали.
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Теорема 1.2 (Формула Грина). Если 𝑢 ∈ 𝐶2 (Ω0) и 𝑣 ∈ 𝐶1 (Ω0), то∫
𝜕Ω0

(𝑣 · ∇𝑢)𝜈 𝑑𝜇 = −
∫
Ω0

∇𝑣 · ∇𝑢 𝑑𝜇 −
∫
Ω0

𝑣 · Δ𝑢 𝑑𝜇. (1)

2. Теорема о среднем для гармонических функций на стратифицированном множестве.
Пусть 𝑋0 ∈ 𝜎𝑘 𝑗 ⊂ Ω0 и пусть также 𝑟 > 0 не превосходит расстояния от 𝑋0 до всех страт 𝜎𝑚𝑖 ,𝑚 ≤
𝑘 , не содержащих 𝑋0. Здесь мы пользуемся внутренней метрикой на Ω, т. е. расстояние 𝑑𝑖𝑠𝑡 (𝑋,𝑌 )
определяется как минимум длин непрерывных кривых, соединяющих 𝑋 и 𝑌 и лежащих в Ω. Если
число 𝑟 удовлетворяет сформулированным требованиям, то оно называется допустимым радиусом, а
множество 𝐵𝑟 (𝑋0) = {𝑋 ∈ Ω : 𝑑𝑖𝑠𝑡 (𝑋0, 𝑋 ) < 𝑟 } – допустимым открытым шаром радиуса 𝑟 . Граница этого
шара 𝑆𝑟 (𝑋0) = {𝑋 ∈ Ω : 𝑑𝑖𝑠𝑡 (𝑋0, 𝑋 ) = 𝑟 } называется допустимой сферой. Эту сферу можно рассматривать
как стратифицированное множество (теперь уже с неплоскими стратами), если её стратами объявить
пересечение страт из Ω с 𝑆𝑟 (𝑋0). Мера и интеграл на этой сфере интерпретируются так же, как мера и
интеграл на всем стратифицированном множестве. Обозначать эту меру будем через 𝜇𝑟 .

Из формулы (1) для стратифицированных множеств легко получается следующее утверждение:
Теорема 2.1. Пусть функция 𝑢 ∈ 𝐶2 (Ω0) такова, что Δ𝑢 ≥ 0 (естественно назвать такую функцию

субгармонической). Тогда на любой допустимой сфере имеет место равенство:∫
𝑆𝑟 (𝑋0 )

(∇𝑢)𝜈 𝑑𝜇𝑟 ≥ 0; (2)

смысл обозначения (·)𝜈 раскрывается в формулировке теоремы 1.1, однако здесь используется единичный
вектор внешней нормали.

Справедливость последнего неравенства естественнымобразом следует изформулы (1), еслиположить
𝑣 ≡ 1, в качестве Ω0 взять 𝐵𝑟 (𝑋0), а в качестве 𝜕Ω0 – 𝑆𝑟 (𝑋0).

В развернутой форме формулу (2) можно переписать в виде:∑︁
𝜎𝑘 𝑗

∫
𝜎𝑘 𝑗

(∇𝑢)𝜈 𝑑𝜇𝑟 ≥ 0,

где 𝜎𝑘 𝑗 – страты допустимой сферы, определяемые упомянутым выше способом.
Последнюю формулу можно также записать следующим образом:∑︁

𝑆𝑘𝑟 (𝑋0 )

∫
𝑆𝑘𝑟 (𝑋0 )

(∇𝑢)𝜈 𝑑𝜇𝑟 ≥ 0, (3)

где 𝑆𝑘𝑟 (𝑋0) – 𝑘-мерный фрагмент сферы 𝑆𝑟 (𝑋0), составленный из страт 𝜎𝑘 𝑗 размерности 𝑘 .
На рис. 2. изображён стратифицированный шар с соответствующей сферой, разбитой на фрагменты.

Рис. 2. Стратифицированный шар и сфера
Fig. 2. Stratified Ball and Sphere

Нетрудно показать, что для фрагментов 𝑆𝑘𝑟 (𝑋0) допустимой сферы имеет место равенство

𝑑

𝑑𝑟

©­­«
1

|𝑆𝑘𝑟 (𝑋0) |

∫
𝑆𝑘𝑟 (𝑋0 )

𝑢 𝑑𝜇𝑟
ª®®¬ =

1
|𝑆𝑘𝑟 (𝑋0) |

∫
𝑆𝑘𝑟 (𝑋0 )

(∇𝑢)𝜈 𝑑𝜇𝑟 ,
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являющееся аналогом классической формулы дифференцирования средних.
В знаменателях этой формулы стоит площадь 𝑘-мерного фрагмента сферы, равная 𝛼𝑟𝑘 , где 𝛼 – угловая

мера этого фрагмента.
Отсюда, после сокращения 𝛼 , получаем

∫
𝑆𝑘𝑟 (𝑋0 )

(∇𝑢)𝜈 𝑑𝜇𝑟 = 𝑟𝑘
𝑑

𝑑𝑟

©­­«
1
𝑟𝑘

∫
𝑆𝑘𝑟 (𝑋0 )

𝑢 𝑑𝜇𝑟
ª®®¬ ,

что позволяет переписать выражение (3) в следующем виде:

∑︁
𝑆𝑘𝑟 (𝑋0 )

𝑟𝑘
𝑑

𝑑𝑟

©­­«
1
𝑟𝑘

∫
𝑆𝑘𝑟 (𝑋0 )

𝑢 𝑑𝜇𝑟
ª®®¬ ≥ 0.

Умножим неравенство выше на 𝑟 :

𝑛−1∑︁
𝑘=0

𝑟𝑘+1
𝑑

𝑑𝑟

©­­«
1
𝑟𝑘

∫
𝑆𝑘𝑟 (𝑋0 )

𝑢 𝑑𝜇𝑟
ª®®¬ ≥ 0.

Пусть𝑅 –допустимыйрадиус для данной точки𝑋0. Тогдаможнопроинтегрировать последнее неравенство
от 0 до 𝑅. В результате получим

𝑛−1∑︁
𝑘=0

𝑅∫
0

𝑟𝑘+1
𝑑

𝑑𝑟

©­­«
1
𝑟𝑘

∫
𝑆𝑘𝑟 (𝑋0 )

𝑢 𝑑𝜇𝑟
ª®®¬ 𝑑𝑟 ≥ 0.

Интегрируя по частям, преобразуем это выражение к виду

𝑛−1∑︁
𝑘=0

𝑟

∫
𝑆𝑘𝑟 (𝑋0 )

𝑢 𝑑𝜇𝑟

���𝑅
0
−
𝑛−1∑︁
𝑘=0

(𝑘 + 1)
𝑅∫

0

©­­«
∫

𝑆𝑘𝑟 (𝑋0 )

𝑢 𝑑𝜇𝑟
ª®®¬𝑑𝑟 ≥ 0.

В первом интеграле подстановка 𝑟 = 0 означает предельный переход при 𝑟 → 0; за счёт множителя
𝑟 перед интегралом получаем на нижнем пределе нулевое значение. Далее замечаем, что повторный
интеграл равен интегралу по (𝑘 + 1)-мерному фрагменту 𝐵𝑘+1

𝑅
(𝑋 ), составленному из пересечений

(𝑘 + 1)-мерных страт с шаром 𝐵𝑅 (𝑋 ). Таким образом имеем:

𝑛−1∑︁
𝑘=0

𝑅

∫
𝑆𝑘
𝑅
(𝑋0 )

𝑢 𝑑𝜇𝑅 −
𝑛−1∑︁
𝑘=0

(𝑘 + 1)
∫

𝐵𝑘+1
𝑅

(𝑋0 )

𝑢 𝑑𝜇 ≥ 0.

После очевидных преобразований приходим к следующему утверждению.
Теорема 2.2 (Теорема о среднем для субгармонических функций). Пусть 𝑢 – cубгармоническая

функция в смысле жесткого лапласиана. Тогда для любой точки 𝑋0 ∈ Ω0 и допустимого 𝑅 > 0 имеет место
следующее неравенство:

𝑅

∫
𝑆𝑅 (𝑋0 )

𝑢 𝑑𝜇𝑅 ≥
𝑛∑︁
𝑘=1

𝑘

∫
𝐵𝑘
𝑅
(𝑋0 )

𝑢 𝑑𝜇.

В применении к классическому случаю – лапласиану в области 𝐺 пространства R𝑑 , сумма сводится к
одному слагаемому и формула преобразуется к∫

𝑆𝑅 (𝑋0 )

𝑢 𝑑𝜇𝑅 ≥ 𝑑

𝑅

∫
𝐵𝑅 (𝑋0 )

𝑢 𝑑𝜇.
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