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Аннотация. В работе представлены результаты исследования особенностей электрофизических характеристик
композитного микроструктурно-неоднородного материала системы сульфат кальция – фосфорная кислота –
углерод. Изучены электропроводность и механизм проводимости образцов материала при комнатной температуре.
Электропроводность материала оказалась достаточно большой и типичной для твердых электролитов.
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Abstract. This paper presents the results of a study of the electrical properties of a microstructurally heterogeneous composite
material consisting of a calcium sulfate, phosphoric acid, and carbon system. The electrical conductivity and conductivity
mechanism of the material samples at room temperature were studied. The material’s electrical conductivity was found to be
quite high and typical of solid electrolytes.
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1. Введение. Разработка стабильных твердых электролитов является важнейшим вопросом в решении
проблем нехватки энергии, поскольку она может максимально повысить эффективность использования
возобновляемых и устойчивых альтернативных источников энергии. Тем не менее немаловажным также
является вопрос обеспечения безопасности эксплуатации устройств на основе твердых электролитов
из-за использования легковоспламеняющихся органических электролитов [1]. Твердотельные литий-
ионные аккумуляторы привлекли большой интерес благодаря негорючести твердых электролитов и
дальнейшему повышению безопасности и надежности. Кроме того, неорганические твердые электролиты
имеют более низкую электропроводность, лучшие электрохимические характеристики при высоких
температурах и более широкий диапазон электрохимической стабильности, чем жидкие, полимерные и
гелевые электролиты. К классификации проводящих материалов следует добавить также смешанные
ионно-электронные проводники, сочетающие оба типа проводимости: электрический заряд переносится
посредством движения свободных электронов и свободных или слабосвязанных положительно и/или
отрицательно заряженных ионов [2, 3] Хотя эти привлекательные свойства неорганических твердых
электролитов широко известны, их достаточно низкая ионная проводимость и плохая химическая и
электрохимическая стабильность препятствуют их практическому использованию [4, 5]. В этом отноше-
нии разработка новых материалов для твердых электролитов остается актуальной задачей современного
физического материаловедения. Одним из эффективных способов решения этой задачи является леги-
рование твердых электролитов различными элементами для увеличения ионной проводимости при
комнатной температуре как, например, описано в [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
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Целью данной работы является исследование возможности использования в качестве твердых
электролитов композитных образцов, состоящих из матрицы сульфата кальция CaSO4, обработанного
ортофосфорной кислотой H3PO4, и углерода.

2. Получение и характеризация образцов композитного материала системы CaSO4-H3PO4-C.
В качестве исходного материала для получения разрабатываемого твердотельного электролита исполь-
зовали полугидрат сульфата кальция CaSO4·0,5H2O. Сначала из цитрогипса, являющегося отходом
биохимического производства лимонной кислоты, получали дигидрат сульфата кальция CaSO4· 2H2O.
Оксидный состав цитрогипса приведен в таблице 1.

Таблица 1
Table 1

Химический состав цитрогипса
Chemical composition of citrogypsum

Оксид SO3 CaO SiO2 FeO SrO Al2O3 MgO Na2O P2O5 K2O
Содержание, % 55,47 43,36 0,54 0,15 0,14 0,13 0,06 0,04 0,08 0,03

По результатам дифференциальной сканирующей калориметрии (ДСК) и термогравиметрического
анализа (ТГ) было установлено, что цитрогипс представляет собой двухфазныйматериал, состоящийиз ди-
гидрата сульфата кальция CaSO4· 2H2O (85 мас.%) и полугидрата сульфата кальция CaSO4·0,5H2O (15 мас. %).

Для получения исследуемого композитного материала был разработан следующий технологический
процесс. Сначала цитрогипс был переведен в однофазный материал CaSO4 · 2H2O. Для этого просеивали
100 г исходного цитрогипса через сито 100 мкм. Затем цитрогипс растворяли с избытком в дистиллиро-
ванной воде из расчета 250 мл H2O на 10 г цитрогипса. Не растворившийся осадок отфильтровывали и
сушили в сушильномшкафу при температуре 60 ◦С в течение 2 ч. ПолученныйCaSO4 · 2H2O выдерживали
в сушильном шкафу при температуре 170 ◦С в течение 4 часов. В результате CaSO4 · 2H2O был полностью
переведен в ангидрит сульфата кальция CaSO4, который далее выдерживали при комнатной температуре
в течение 24 ч для превращения CaSO4 в CaSO4 · 0,5H2O. Полученный порошок обрабатывали при
температуре 90 ◦С в течение 15 мин в 85%-м водном растворе ортофосфорной кислоты H3PO4 из расчета
50 мл ортофосфорной кислоты на 20 г сухого вещества. После этого полученную смесь разбавляли
500 мл дистиллированной воды и отфильтровывали через бумажный фильтр с размером пор 2-3 мкм
(синяя лента). После фильтрации порошок на бумажном фильтре сушили при комнатной температуре в
течение 24 часов, а затем в сушильном шкафу при температуре 60 ◦С в течение 5 суток. В процессе сушки
происходило разрушение фильтровальной бумаги и порошок постепенно приобретал черный цвет.
Фазовые превращения материала, выявленные для данного технологического процесса, определяются
процессами гидратации, дегидратации, кислотно-основного взаимодействия и карбонизации, которые
можно выразить следующими соответствующими реакциями.

1. Ортофосфорная кислотаH3PO4 реагирует с полугидратом сульфата кальцияCaSO4 · 0,5H2O (источник
ионов Ca2+), образуя фосфат кальция:

3Ca2SO4 · 0, 5H2O + 2H3PO4 −→ Ca3 (PO4)2 ↓ +3H2SO4 .

2. Серная кислота H2SO4 выступает как сильный дегидратирующий агент, разрывая гликозидные
связи и отнимая воду от глюкозных звеньев целлюлозы, из которой состоит бумажный фильтр:

(C6H10O5)𝑛 + 𝑛H2SO4 −→ 6𝑛C + 5𝑛H2O + 𝑛H2SO4 · 5H2O.

В результате выделяется практически чистый углерод в аморфной форме (черный углеродистый
остаток), смешанный с гидратами, которые за счет капиллярного эффекта постепенно равномерно
обволакивают частицы порошка сульфата кальция с небольшим содержанием фосфата кальция.

Из полученного порошкового материала методом одноосного прессования при давлении 5 МПа были
скомпактированы объемные образцы диаметром 12 мм и толщиной 2 мм. Для прессования использовали
универсальную испытательную машину Instron 3369. Прессование проводили без добавления воды в
прессуемый порошок. Фотография типичного объемного образца на основе исходного порошка после
обработки ортофосфорной кислотой и сушки на фильтровальной бумаге показана на рисунке 1 (слева).
Для визуального сравнения приведена на рисунке 1 (справа) приведена фотография объемного образца,
исходный порошок для компактирования которого сушили не на бумажном фильтре, а на поверхности
корундовой керамики. Объемный образец, полученный после его сушки на фильтровальной бумаге,
имеет черный цвет, что связано с внедрением в этот образец аморфного углерода в процессе сушки, т. е.
такой материал следует рассматривать как микроструктурно-неоднородный композитный материал,
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состоящий из матрицы и наполнителя. Объемный образец, полученный после сушки на керамической
поверхности, остается светло-серым, как и исходный порошок, т. е. его можно рассматривать как
микроструктурно-однородный материал. То есть сушка скомпактированного образца на фильтровальной
бумаге позволяет получить композитный материал на основе CaSO4 с добавлением аморфного углерода,
играющего роль наполнителя композита.

Рентгеноструктурный анализ полученного композитного материала проводили на дифрактометре
Rigaku SmartLab с фокусировкой по Брэггу-Брентано с использованием CuK𝛼 -излучения при напряжении
60 кВ и токе 60 мА. Съемки проводили в диапазоне углов 2𝜃 от 5 до 80◦. Шаг сканирования составлял
0,02◦, время экспозиции – 20 с. На дифрактограмме (рисунок 2) наблюдаются рефлексы только от одной
фазы – ангидрита сульфата кальция CaSO4.

Рис. 1. Фотографии объемного образца композитного микроструктурно-неоднородного материала CaSO4-H3SO4-C
после сушки на фильтровальной бумаге (слева), и объемного образца микроструктурно-однородного материала

CaSO4-H3SO4 после сушки на поверхности корундовой керамики (справа)
Fig. 1. Photographs of a bulk sample of the composite microstructurally inhomogeneous material CaSO4-H3SO4-C after drying
on filter paper (left), and a bulk sample of the microstructurally homogeneous material CaSO4-H3SO4 after drying on the

surface of corundum ceramics (right)

Рис. 2. Рентгеновский спектр исследуемого образца и положение пиков из базы данных RRUFF
Fig. 2. X-ray spectrum of the studied sample and peak positions from the RRUFF database

Аморфный углерод в композитном материале является рентгеноаморфным и на дифрактограмме
не фиксируется. На данном этапе исследований его наличие в исследуемых образцах подтверждается
только характерным черным цветом образцов и химическими превращениями, которые происходят
в процессе обработки CaSO4 · 0,5H2O ортофосфорной кислотой и последующим взаимодействием
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образовавшейся кислоты H2SO4 с материалом бумажного фильтра в процессе сушки. Также в образцах
композитного материала, на основе EDX анализа, был обнаружен фосфор P (таблица 2). Наличие
P обусловлено обработкой материала ортофосфорной кислотой и является ожидаемым [16]. Анализ
выполняли с помощью сканирующего электронного микроскопа высокого разрешения Nova NanoSem
450, оснащенного EDX детектором.

Таблица 1
Table 1

Результаты EDX анализа исследуемого образца композитного материала системы CaSO4-H3PO4-C
Results of EDX analysis of the studied sample of composite material of the CaSO4-H3PO4-C system

O, мас.% Al, мас.% Si, мас.% P, мас.% S, мас.% K, мас.% Ca, мас.% Ni, мас.%
59,14 0,22 0,25 7,74 12,57 0,06 18,14 1,88

3. Электрические свойства образцов композитного материала системы CaSO4-H3PO4-C. Элек-
трические характеристики (тангенс угла диэлектрических потерь и полный импеданс, включающий
действительную и мнимую части), образцов композитного материала изучали с помощью импедансного
спектрометра Novocontrol Concept-43 в диапазоне частот 20–2400 Гц при комнатной температуре. Электри-
ческие контакты наносили серебряной проводящей пастой на контактные площадки противоположных
граней образцов, к которым крепили измерительные зонды.

На рисунке 3 представлена частотная зависимость тангенса угла диэлектрических потерь tg𝛿 . С уве-
личением частоты tg𝛿 вначале быстро возрастает, при частоте 𝑓 = 820 Гц достигает максимума, а затем
медленно уменьшается, стремясь к постоянному значению. Вид кривой tg𝛿 (𝑓 ) отражает частотную зави-
симость диэлектрических потерь с учетом влияния релаксационных механизмов и электропроводности
материала. Наличие максимума на кривой tg𝛿 (𝑓 ) свидетельствует о наличии релаксационных потерь в
образце, поэтому для дальнейшего анализа особенностей его электрических свойств применяли метод
диаграмм Коула – Коула.

Рис. 3. Частотная зависимость тангенса угла диэлектрических потерь для образца композитного материала системы
CaSO4-H3SO4-C

Fig. 3. Frequency dependence of the dielectric loss tangent for a sample of composite material of the CaSO4-H3SO4-C system

Типичный вид спектра импеданса в координатах Найквиста (зависимость мнимой части полного
импеданса −Im(𝑍 ) от его действительной части Re(𝑍 )) представлен на рисунке 4. Диаграмма Найквиста
представляет собой одну дугу, близкую к полуокружности, что объясняется наличием одного механизма
проводимости.
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Рис. 4. Спектр импеданса и эквивалентная схема образца композитного материала системы CaSO4-H3SO4-C
при комнатной температуре

Fig. 4. Impedance spectrum and equivalent circuit of a sample of composite material of the CaSO4-H3SO4-C system at room
temperature

Эквивалентная схема, соответствующая такой диаграмме, также приведена на рисунке. Она состоит из
контура, который включает параллельно подключенные сопротивление и емкость, а также сопротивления
контактов и элемента постоянной фазы. Контур 𝑅1𝐶1, предположительно, характеризует проводимость
по объему зеренных глобул, которые составляют матрицу сульфата кальция. Элемент постоянной фазы
(прямой участок на рисунке 4) может быть связан с протонной диффузией в образце на основе сульфата
кальция, обработанного ортофосфорной кислотой, при низких частотах [16]. Величина сопротивления
(𝑍max = (Im(𝑍 )2 + Re(𝑍 )2)−1/2 = 19,7 Ом) указывает на существенный вклад в проводимость аморфного
углерода, т. к. сульфат кальция является диэлектриком. Для примера на рисунке 5 приведен спектр
импеданса в координатах Найквиста для сульфата кальция, также обработанного при температуре 90◦С
в течение 15 мин в 85%-м водном растворе фосфорной кислоты, но высушенного на керамической
подложке. Хорошо видно, что в отсутствии аморфного углерода сопротивление меняется более чем в
10 раз, полуокружность не завершенная.

Рис. 5. Спектр импеданса образца, высушенного на керамической подложке, при комнатной температуре
Fig. 5. Impedance spectrum of a sample dried on a ceramic substrate at room temperature

Электрический импеданс модели Коула – Коула [17] на угловой частоте 𝜔𝑖 (𝑖 = 1 ÷ 𝑁 ) определяется
как:

𝑍 (𝜔𝑖 ) = Re(𝑍 ) (𝜔𝑖 ) + 𝑗 Im(𝑍 ) (𝜔𝑖 ) = 𝑅∞ + 𝑅0 − 𝑅∞
1 + (𝑅0 − 𝑅∞)𝐶 ( 𝑗𝜔𝑖 )𝛼

,

где Re(𝑍 ) (𝜔𝑖 ) – действительная часть полного сопротивления:
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Re(𝑍 ) (𝜔𝑖 ) = 𝑅∞ +
(𝑅0 − 𝑅∞)

(
1 + 𝜔𝛼

𝑖
cos

𝛼𝜋

2
(𝑅0 − 𝑅∞)𝐶

)
(
1 + 𝜔𝛼

𝑖
cos

𝛼𝜋

2
(𝑅0 − 𝑅∞)𝐶

)2
+

(
𝜔𝛼
𝑖
sin

𝛼𝜋

2
(𝑅0 − 𝑅∞)𝐶

)2 ,
и Im(𝑍 ) (𝜔𝑖 ) – мнимая часть полного сопротивления:

Im(𝑍 ) (𝜔𝑖 ) = −

(
𝜔𝛼
𝑖
sin

𝛼𝜋

2
(𝑅0 − 𝑅∞)2𝐶

)
(
1 + 𝜔𝛼

𝑖
cos

𝛼𝜋

2
(𝑅0 − 𝑅∞)𝐶

)2
+

(
𝜔𝛼
𝑖
sin

𝛼𝜋

2
(𝑅0 − 𝑅∞)𝐶

)2 .
Коэффициент распределения времени релаксации 𝛼 и время релаксации 𝜏 определяются как:

𝛼 =
2
𝜋
arccos

𝑏

𝑅
,

𝜏 =

(
𝑅0 − 𝑅∞
𝑍𝑐 − 𝑅∞

− 1

)1/𝛼
𝜔𝑐

arccos
𝑏

𝑅
,

где𝜔𝑐 – частота, на которой абсолютное значение мнимой части полного сопротивления имеет максимум.
Затем в соответствии с алгоритмом [17] определяются остальные параметры:

𝑅∞ = Re(𝑍𝑐 ) +
Im(𝑍𝑐 )

tg
𝛼𝜋

4

,

𝑅0 = Re(𝑍𝑐 ) −
Im(𝑍𝑐 )

tg
𝛼𝜋

4

,

𝐶 =

tg
𝛼𝜋

4
2 · Im(𝑍𝑐 )𝜔𝛼𝑐

.

Для исследуемого образца эти параметры были оценены как 𝑅∞ ≈ 4,75 Ом, 𝑅0 ≈ 30,8 Ом, 𝐶 ≈ 0,2 мкФ,
𝛼 ≈ 0,87 и 𝜏 ≈ 0,14 мс.

4. Заключение. Таким образом, исследованы особенности электрических свойств композитного
материала системы CaSO4-H3PO4-C, полученного путем обработки сыпучего прессованного порошкооб-
разного материала CaSO4 85 мас.% водным раствором ортофосфорной кислоты с последующей сушкой
на бумажном фильтре. Установлено, что введение углерода в систему CaSO4-H3PO4 существенно влияет
на электрофизические свойства. Наблюдается увеличение электропроводности более чем в 10 раз по срав-
нению с двухкомпонентной системой CaSO4-H3PO4. Механизм проводимости носит преимущественно
ионный характер. Полученные результаты демонстрируют перспективность исследуемой системы для
применения в электротехнических устройствах. Выявленные закономерности могут быть использованы
при разработке новых функциональных материалов.
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