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Аннотация. Изучается однородное бернуллиевское случайное поле на бесконечном однородном графе типа
дерева Кэйли со степенью вершин 𝑠 = 3. Для вероятности перколяции 𝑃 (𝑐) случайного поля на бесконечность
из фиксированной вершины графа, которая является функцией от вероятности 𝑐 заполнения вершин, строится
кластерное разложение. Находятся гарантированные оценки точности ее аппроксимаций посредством частичных
сумм разложения и показывается, что это разложение сходится всюду при 𝑐 ∈ (0, 1) так, что порог перколяции 𝑐∗ не
является особой точкой с точки зрения сходимости разложения.
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Abstract. The Bernoulli uniform random field on the infinite uniform Caley tree with the vertex degree 𝑠 = 3 is investigated.
For this graph, the percolation probability 𝑃 (𝑐) of the random field from a marked graph vertex to infinity is studied, where it
is a function on the vertex filling 𝑐 . The famous cluster decomposition of the function 𝑃 (𝑐) is constructed for the graph. Some
guaranteed estimates of the accuracy of its approximations are found when they are built by means of partial sums of the
decomposition. It is shown that the decomposition converges everywhere in (0, 1) such that the percolation thresholod 𝑐∗ is
not a special point from the decomposition convergence viewpoint.
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1. Введение. Возникшая в статистической физике, в процессе математического моделирования
неупорядоченных сред [1], [2], [3] теория перколяции представляет, в настоящее время, направление
исследований, находящееся на стыке между теорией вероятностей и математической физикой или,
более общо́, математического моделирования. В этой теории разработан адекватный математический
язык, позволяющий, в частности, математически описывать на его основе среды со всевозможными
случайными нарушениями пространственно упорядоченной внутренней структуры и сформулировать
на этом языке математические задачи, направленные на вычисление физических характеристик таких
сред, которые связаны только лишь с их стохастической геометрией. Одной из самых важных из таких
характеристик является вероятность перколяции 𝑃 , которая описывает количественно физический эффект
перколяции (просачивания), то есть способность среды, опираясь на какое-то понятие пространственной
связности элементов, из которых она состоит, устанавливать связи между элементами, удаленными на
большие расстояния. Само понятие связности определяется, конечно же, в соответствии с конкретными
физическими свойствами изучаемой среды. Эффект перколяции, в частности, заключается в том, что
связность между удаленными элементами среды может исчезать и появляться в процессе изменения
параметров изучаемой физической системы. Вероятность же перколяции, в этом случае, является
функцией этих параметров. Она может, в соответствии со сказанным, обращаться в нуль или принимает
ненулевые значения при прохождении параметров системы каких-то пороговых значений.

Несмотря на успехи на начальной стадии развития теории перколяции, которые были связаны,
главным образом, с компьютерными экспериментами в простейшей, с математической точки зрения,
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ситуации, случайное состояние среды допускало математическое моделирование на основе точечного
бернуллиевского случайного поля {𝜌 (𝑥);𝑥 ∈ 𝑉 } на некотором бесконечном графе ⟨𝑉 ,Φ⟩ со счетным
множеством вершин𝑉 и бинарным отношением смежности Φ. Такое допущение возможно в том случае,
когда состояние системы можно охарактеризовать одним параметром 𝑐 ∈ (0, 1), который, для любой
вершины графа 𝑥 ∈ 𝑉 , имеет смысл вероятности события {𝜌 (𝑥) = 1}. В описанной ситуации вероятность
перколяции из этой вершины на сколь угодно большое удаление от нее является функцией 𝑃 (𝑐) только
одного этого параметра. Эффект перколяции состоит в том, что интервал (0, 1) изменения параметра 𝑐
разбивается на полуинтервал (0, 𝑐∗], где 𝑃 (𝑐) = 0 и интервал (𝑐∗, 1), в котором 𝑃 (𝑐) > 0.

Для моделей теории перколяции, связанных с бернуллиевскими случайными полями на довольно
простых бесконечных периодических графах (см., например, [4]), удалось численно определить пороги 𝑐∗
перколяции, используя метод Монте-Карло, то есть на основе обработки статистических данных, получа-
емых посредством компьютерных датчиков случайных чисел. В некоторых совершенно простых случаях
удалось вычислить пороги перколяции точно. Однако, что касается развития аналитических результатов
в математической теории перколяции, то, в настоящее время, здесь поставлено гораздо больше непростых
вопросов, чем полученных математически обоснованных результатов (см., например, [4], [5]). В частности,
это утверждение относится к задаче вычисления вероятности перколяции 𝑃 (𝑐) для бернуллиевского
случайного поля на периодических графах. Основным аналитическим инструментом при решении этой
задачи является т. н. кластерное разложение. Несмотря на то, что, посредством несложных вероятностных
рассуждений легко устанавливается сходимость этого разложения на полуинтервале (𝑐∗, 1], вместе с тем
точность получаемых на его основе аппроксимаций перколяции 𝑃 (𝑐) удается оценивать очень грубо на
основе оценки сверху решения комбинаторной задачи о числе конечных кластеров с заданной мерой их
границы. Грубость этих оценок заключается в том, что их область сходимости составляет такой полу-
интервал значений (𝑐+, 1], для которого точка 𝑐+, как правило, существенно превосходит 𝑐∗. Различные
попытки изменения оценок такого рода (см., например, [6]–[8]) приводили лишь к незначительным
улучшениям. В этой связи возникает естественный вопрос, а возможно ли, в принципе, решение задачи
о вычислении вероятности перколяции 𝑃 (𝑐) в окрестности точки 𝑐∗ посредством последовательных
приближений на основе кластерного разложения с гарантированными оценками точности. Результат,
полученный в настоящей работе, дает некоторую надежду на положительный ответ.

2. Постановка задачи. Неориентированный граф Γ представляет собой пару ⟨𝑉 ,Φ⟩, в которой
𝑉 – множество, элементы которого называются вершинами, а Φ – множество парных множеств с элемента-
ми из 𝑉 , которые называются ребрами, связывающими вершины, входящие в эти множества. Множество
Φ называется отношением смежности на графе. Вершины графов мы будем обозначать песредством букв
латинского алфавита 𝑥,𝑦, 𝑧,𝑢, 𝑣,𝑤 , а факт смежности пары {𝑥,𝑦}, то есть ее принадлежности к Φ будем
записывать как 𝜑 (𝑥,𝑦).

Путем 𝛾 (𝑥,𝑦) с начальной вершиной 𝑥 и конечной — 𝑦 называется последовательность
⟨𝑥 = 𝑥0, 𝑥1, ..., 𝑥𝑛 = 𝑦⟩ = 𝛾 (𝑥,𝑦) длины 𝑛 + 1, в которой имеет место 𝜑 (𝑥 𝑗−1, 𝑥 𝑗 ), 𝑗 = 1 ÷ 𝑛. Длину пу-
ти 𝛾 (𝑥,𝑦) будем обозначать посредством |𝛾 (𝑥,𝑦) |. Далее, говоря о путях на графе, мы будем всегда
предполагать, что они обладают свойством невозвратности, то есть 𝑥 𝑗+1 ≠ 𝑥 𝑗−1, 𝑗 ∈ 𝐼𝑛−1 для любой
длины 𝑛.

Пара {𝑥,𝑦} вершин графа называется связанной, если на графе существует путь 𝛾 (𝑥,𝑦). Если па-
ра вершин связана на Γ, то мы будем этот факт записывать в виде 𝜓 (𝑥,𝑦). Бинарное отношение 𝜓
является, очевидным образом, симметричным. Оно также является рефлексивным, если установить,
по определению, что на графе Γ всегда существуют пути 𝛾 (𝑥, 𝑥) нулевой длины для любой вершины
𝑥 ∈ 𝑉 . Несложно доказывается, что отношение 𝜓 является транзитивным, то есть для любых трех
вершин 𝑥,𝑦, 𝑧 из𝜓 (𝑥,𝑦) и𝜓 (𝑦, 𝑧) следует, что имеет место𝜓 (𝑥, 𝑧). Таким образом, отношение𝜓 является
отношением эквивалентности. Оно разбивает все множество 𝑉 вершин на непересекающиеся множества
эквивалентных друг другу вершин. Они называются связными компонентами графа Γ. Граф называется
связным, если он состоит только из одной связной компоненты.

Пусть Γ — бесконечный связный граф со множеством вершин 𝑉 со счетной мощностью. Степенью
вершины 𝑥 графа будем называть число 𝑠 ∈ N, определяемое как число элементов в множестве
{𝑦 ∈ 𝑉 : 𝜑 (𝑥,𝑦)}.

Путь ⟨𝑥 = 𝑥0, 𝑥1, ..., 𝑥𝑛 = 𝑦⟩ = 𝛾 (𝑥,𝑦) длины 𝑛 на графе называется несамопересекающимся, если 𝑥 𝑗 ≠ 𝑥𝑘
для любой пары { 𝑗, 𝑘} ∈ 𝐼𝑛 ∪ {0}, 𝐼𝑛 = {1, 2, ..., 𝑛}. Класс всех несамопересекающихся путей на графе Γ
обозначим посредством G. Расстоянием между двумя вершинами 𝑥 и 𝑦 на графе называется число

𝑟 (𝑥,𝑦) =min{|𝛾 (𝑥,𝑦) |;𝛾 (𝑥,𝑦) ∈ G} .

Связный граф Γ называется древесным, если на нем все пути являются несамопересекающимися.

Определение 2.1. Деревом Кэйли степени 𝑠 называется древесный граф, у которого степени всех вершин
совпадают и равны 𝑠 .
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Очевидно, что дерево Кэйли полностью характеризуется указанием степени своих вершин, которая
принимает значения 𝑠 ≥ 2. При 𝑠 = 2 дерево Кэйли не представляет интереса с точки зрения теории
перколяции, так как для него 𝑃 (𝑐) = 0 при 𝑐 ≠ 1. В этой работе мы будем рассматривать дерево Кэйли
степени 𝑠 = 3.

Пусть на графе Γ, который, в соответствии со сказанным, является деревом Кэйли со степенью 3, задано
однородное бернуллиевское случайное поле {𝜌 (𝑥) ∈ {0, 1};𝑥 ∈ 𝑉 }. Его распределение вероятностей
полностью определяется условием статистической независимости всех случайных величин 𝜌 (𝑥), 𝑥 ∈ 𝑉 и
значением вероятности Pr{𝜌 (𝑥) = 1} = 𝑐 ∈ (0, 1).

Каждая случайная реализация 𝜌 поля определяет подграф Γ [𝜌] = ⟨𝑉 (𝜌),Φ(𝜌)⟩ с множеством вершин
𝑉 (𝜌) = {𝑥 : 𝜌 (𝑥) = 1} и определяемым наследственным образом отношением смежности. Этот подграф
уже не является, в общем случае, связанным. Его связные компоненты𝑊 называются кластерами. Пусть
W(𝜌) — класс всех кластеров графа Γ(𝜌). Число вершин в кластере𝑊 , если таких вершин конечное
множество, будем обозначать посредством |𝑊 |. Если же это множество бесконечно, то будем писать
|𝑊 | =∞, а кластер будем называть бесконечным.

Отметим на графе Γ какую-либо из вершин, которую будем называть начальной и отмечать посред-
ством 0. Если эта вершина принадлежит бесконечному кластеру, то будем говорить, что из этой вершины
имеется перколяция. Наличие перколяции из вершины 0 эквивалентно тому, что имеется бесконечный
несамопересекающийся путь 𝛾 (0). Функция 𝑃 (𝑐), о которой шла речь во введении, определяется как
вероятность 𝑃 (𝑐) = Pr{∃(𝛾 (𝑥) : |𝛾 (𝑥) | =∞)}. Если при данном значении 𝑐 ∈ (0, 1) вероятность 𝑃 (𝑐) того,
что случайные реализации 𝜌 обладают перколяцией, положительна, то говорят, что при этом значении
𝑐 имеется перколяция на графе Γ. Задача состоит в том, чтобы определить для графа Γ множество
значений 𝑐 , которые обладают таким свойством.

Лемма 2.1. Вероятность 𝑃 (𝑐) перколяции на дереве Кэйли не зависит от 𝑥 ∈ 𝑉 .
Доказательство. Ввиду постоянства степеней всех вершин для графа Γ и отсутствия в нем самопе-
ресекающихся путей возможно ввести следующее преобразование T трансляции. Оно определяется
индуктивно для каждой вершины, согласно ее расстоянию от вершины 0. Выберем одну из вершин
𝑅1 = {e𝑗 ; 𝑗 ∈ {1, 2, 3}, смежных с вершиной 0, например e1, и положим T0 = e1. Вершина e1 имеет три
смежных вершины. Обозначим множество этих вершин посредством 𝑅′1 (оно содержит вершину 0).
Установим каким-то образом биекцию множества 𝑅1 на множество 𝑅′1. Далее, рассмотрим множество
из шести вершин, находящихся на расстоянии 2 от вершины 0. Установим биекцию этого множества
на множество 𝑅′2 вершин, находящихся на расстоянии 2 от вершины e1. Причем эту биекцию можно
сделать так, что каждая пара вершин, смежных с вершиной e𝑗 , 𝑗 ∈ {1, 2, 3} из 𝑅1, перейдет в пару вершин,
смежных с образом Te𝑗 в 𝑅′1. Такую биекцию можно всегда построить, так как на рассматриваемом
графе – дереве Кэйли со степенью 3 не имеется самопересекающихся путей, и поэтому при выборе
вершин множества 𝑅′2 используются вершины, которые не рассматривались на предыдущем шаге.

Продолжим процесс построения, рассматривая последовательно множества 𝑅𝑚 всех вершин, находя-
щихся на расстояниях𝑚 от вершины 0. Они состоят, соответственно, из 3 · 2𝑚−1 вершин. Эти множества
отображаются биективно, соответственно, в множества 𝑅′𝑚 вершин, находящихся на расстоянии𝑚 от
вершины e1, , 𝑚 = 1, 2, ..., 𝑛, которые содержат точно такое же количество вершин. При этом каждое
из множеств 𝑅′𝑚 состоит из вершин, которые не использовались на предыдущих шагах построения.
Рассуждая по индукции, определим биекцию множества 𝑅𝑛+1, состоящего из 3 · 2𝑛 вершин, находящихся
на расстоянии 𝑛 + 1 от вершины 0, на множество 𝑅′𝑛+1, которое состоит из такого же количества вершин,
которые находятся на расстоянии 𝑛 + 1 от вершины e1. При этом биекция может быть определена так, что
она отображает каждую пару вершин из 𝑅𝑛+1, смежных с какой-то вершиной 𝑥 ∈ 𝑅𝑛 , в пару вершин из
𝑅′𝑛+1, смежных с вершиной T𝑥 . Это возможно в силу того, что степень вершин графа равна 3, и того, что в
множество 𝑅′𝑛+1 входят вершины графа, которые не рассматривались на предыдущих шагах построения.

Продолжая описанный процесс построения неограниченно, увеличивая расстояние 𝑛 до вершины 0,
определим полностью требуемое отображение T. Так вероятность Pr{𝜌 (𝑥) = 𝑐} не зависит от 𝑥 , то
распределения вероятностей на графах Γ иTΓ совпадают. Поэтому вероятность перколяции из вершины 0
на исходном графе Γ совпадает с вероятностью перколяции из вершины T0 на графе TΓ. ■

3. Кластерное разложение. Задача о вычислении вероятности перколяции на дереве Кэйли Γ со
степенью 𝑠 = 3 решается точно так, что функция 𝑃 (𝑐) выражается в виде элементарной функции. В самом
деле, представим граф Γ в виде склейки трех подграфов Γ𝑗 , 𝑗 = 1, 2, 3 с общей вершиной 0. Множествами
вершин каждого подграфа c фиксированным значением 𝑗 ∈ {1, 2, 3} являются𝑉𝑗 ∪ {0}, где𝑉𝑗 – множество
всех вершин, до которых можно добраться из начальной вершины 0 по пути с начальным ребром ⟨0, 𝑥 𝑗 ⟩.
Ребра подграфа Γ𝑗 состоят из всех ребер, инцидентных вершинам из 𝑉𝑗 .

Пусть 𝑄 (𝑐) – условная вероятность того, что пересечение бесконечного кластера 𝑊 , в котором
расположен бесконечный путь, реализующий перколяцию, с множеством 𝑉𝑗 вершин подграфа Γ𝑗 ,
конечно, при условии, что {𝜌 (0) = 1}. Тогда, вследствие статистической независимости случайного поля
на множествах вершин𝑉𝑗 каждого из подграфов Γ𝑗 , 𝑗 ∈ {1, 2, 3}, вероятность 𝑃 (𝑐) равна (1−𝑄3 (𝑐)), так как,
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в случае существования перколяции с ненулевой вероятностью на графе Γ, она должна существовать, с
ненулевой вероятностью, по крайней мере, на каком-нибудь из подграфов Γ𝑗 , 𝑗 ∈ {1, 2, 3}. Таким образом,
нужно вычислить вероятность 𝑄 (𝑐).

Точно так же рассуждая, находим, что условная вероятность перколяции из вершины e𝑗 при условии,
что 𝜌 (e𝑗 ) = 1 равна 𝑄2 (𝑐), так как подграф Γ𝑗 представляется в виде склейки по вершине e𝑗 двух
изоморфных ему подграфов Γ𝑗,1 и Γ𝑗,2, 𝑗 ∈ {1, 2, 3}.

Так как случайное событие, состоящее в отсутствии перколяции из вершины e𝑗 на графе Γ𝑗 , складыва-
ется из суммы двух несовместимых событий: {𝜌 (e𝑗 ) = 0} и

{𝜌 (e𝑗 ) = 1,∁{∃
(
𝛾 (e𝑗 ) : |𝛾 (e𝑗 ) | =∞, {𝛾 (e𝑗 )} ⊂ 𝑉𝑗

)
}} ,

то вероятность 𝑄 (𝑐) подчинена квадратному уравнению

𝑄 (𝑐) = 1 − 𝑐 + 𝑐𝑄2 (𝑐) . (1)

При 𝑐 ≤ 1/2 это уравнение имеет единственное решение𝑄 (𝑐) = 1, удовлетворяющее условию 0 ≤ 𝑄 (𝑐) ≤ 1,
а при 𝑐 > 1/2, кроме этого решения, имеется еще одно 𝑄 (𝑐) = (1 − 𝑐)/𝑐 , так как только в этом случае
(1 − 𝑐)/𝑐 ≤ 1.

Сформулируем доказанное утверждение в виде отдельной теоремы.
Теорема 2.1. Вероятность перколяции на дереве Кэйли со степенью 𝑠 = 3 имеет вид 𝑃 (𝑐) = 𝑐 (1 −𝑄 (𝑐))3,

где функция𝑄 (𝑐) подчинена уравнению (1), которое при 𝑐 > 1/2 имеет два решения𝑄 (𝑐) = 1 и𝑄 (𝑐) = (1−𝑐)/𝑐 .
Очевидно, что порогом перколяции у рассматриваемой модели является значение 𝑐∗ = 1/2. Однако

для установления этого факта нужно указать, что при 𝑐 > 1/2 из двух возможных решений уравнения
(1) необходимо выбирать функцию (1 − 𝑐)/𝑐 . Но для этого требуются соображения, связанные с непре-
рывностью функции 𝑄 (𝑐). Однако нас в этой работе интересует не само решение, которое находится
элементарнымиметодами, а то, как быстро сходится к истинному решению𝑄 (𝑐) уравнения (1) кластерное
разложение, формируемое посредством вероятностных соображений.

Пусть Γ = ⟨𝑉 ,Φ⟩ – связный граф и {𝜌 (𝑥);𝑥 ∈ 𝑉 } – бернуллиевское случайное поле на𝑉 с вероятностью
заполнения вершин Pr{𝜌 (𝑥) = 1} = 𝑐 , 𝑥 ∈ 𝑉 . Пусть W0 – класс всех конечных кластеров на графе Γ,
содержащих вершину 0. Каждой реализации случайного поля 𝜌 соответствует классW(𝜌) кластеров.

Так как событие {𝜌 (𝑥) = 1} реализуется в тех случаях, когда эта вершина 𝑥 содержится в каком-то
однозначно определяемом конечном кластере𝑊 , либо она содержится в бесконечном кластере и поэтому
существует несамопересекающийся бесконечный путь 𝛾 с началом в этой вершине, то это событие
представимо в виде дизъюнктивного разложения

{𝜌 (𝑥) = 1} =
( ⋃
𝑊 ∈W0

{𝑊 ∋ 𝑥 :𝑊 ∈ W(𝜌)}
)
∪ {𝑊 ∋ 𝑥 : ∃

(
𝛾 (𝑥) : |𝛾 (𝑥) | =∞, {𝛾 (𝑥)} ⊂𝑊 ∈ W(𝜌)

)
}.

Следовательно, имеет место разложение

𝑐 =
∑︁

𝑊 ∋𝑥 :𝑊 ∈W0

𝑃 [𝑥 ;𝑊 ] + 𝑃 (𝑐) , (2)

где
𝑃 [𝑥 ;𝑊 ] = Pr{𝑊 ∋ 𝑥 :𝑊 ∈ W(𝜌)}

есть вероятность того, что вершина 𝑥 принадлежит конечному кластеру, который содержится в классе
W(𝜌) всех конечных кластеров, порождаемых случайной реализацией 𝜌 . Из разложения (2) следует, что
вероятность перколяции 𝑃 (𝑐) представима в виде

𝑃 (𝑐) = 𝑐 −
∑︁

𝑊 ∋0:𝑊 ∈W0

𝑃 [0;𝑊 ] . (3)

Представление вероятности перколяции из вершины 0 мы будем называть ее кластерным разложением.
Сумма в правой части (3) заведомо сходится при любом значении 𝑐 , так как 𝑃 (𝑐) ≥ 0. Нашей целью
является установление того, с какой скоростью реализуется сходимость этого ряда и тем самым найти
гарантированные оценки точности аппроксимаций вероятности 𝑃 (𝑐) посредством его частичных сумм.

4. Перколяция на Γ и марковские цепи с марковским измельчением. Применим для оценки
вероятностей 𝑃 [0;𝑊 ] представления теории марковских цепей с марковским измельчением.

Сконструируем древесный граф Γ′1 с начальной вершиной e1 такой, что его склейка с ребром {0, e1} в
этой вершине представляет введенный выше граф Γ1. Представим множество вершин 𝑉 ′ графа Γ′1 в виде
дизъюнктивного разложения

𝑉 ′ =
∞⋃
𝑚=0

𝑉𝑚 , 𝑉0 = {e1}
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где𝑉𝑚 – множество вершин в𝑚-го поколения, определяемые индуктивно как𝑉𝑚+1 =𝑉𝑚 × 𝐼2, 𝐼2 = {1, 2}, то
есть𝑉𝑚 = 𝐼𝑚2 при𝑚 ∈ N. Вершинымножества𝑉𝑚 обозначимметкамив виде ⟨ 𝑗1, ..., 𝑗𝑚⟩ последовательностей
длины 𝑚, в которых 𝑗𝑘 ∈ {1, 2}, 𝑘 ∈ {1, 2, ...𝑚}. Причем отношение смежности на графе Γ′1 строится
указанием при каждом𝑚 = 0, 1, 2, ... смежных пар {⟨ 𝑗1, ..., 𝑗𝑚⟩, ⟨ 𝑗1, ..., 𝑗𝑚, 𝑗𝑚+1⟩}, 𝑗𝑚+1 ∈ {1, 2} для каждой
вершины, описываемой последовательностью ⟨ 𝑗1, ..., 𝑗𝑚⟩,

Сопоставим бернуллиевскому случайному полю {𝜌 (𝑥);𝑥 ∈ 𝑉 ′} специальный случайный процесс
{𝑆𝑚 ;𝑚 ∈ N+} с дискретным временем 𝑚 ∈ N+. Он является марковской цепью общего вида [9]. При
каждом значении 𝑚 состояние процесса 𝑆𝑚 является подмножеством в 𝑉𝑚 , 𝑆𝑚 ⊂ 𝑉𝑚 . Таким образом,
конструируемый случайный процесс обладает изменяющимся пространством состояний.

Пусть𝑊 – случайное множество на 𝑉 ′ такое, что𝑊 = {𝑥 ∈ 𝑉 ′ : 𝜌 (𝑥) = 1}. Тогда 𝑆𝑚 является мно-
жеством заполненных узлов в𝑚-м поколении, 𝑆𝑚 =𝑊 ∩𝑉𝑚 . Для фиксированного 𝑆𝑚 ⊂ 𝑉𝑚 множество
𝑆𝑚 × 𝐼2 ⊂ 𝑉𝑚+1 содержит множество 𝑆𝑚+1 заполненных вершин случайной реализации𝑊 в следую-
щем поколении. Таким образом, траекториями случайного процесса являются последовательности
⟨𝑆0 =𝑉0, 𝑆1, 𝑆2, ..., 𝑆𝑚, ...⟩, где 𝑆𝑚+1 ⊂ 𝑆𝑚 × 𝐼2. Определим для них операцию проектирования pr[𝑆𝑚+1] = 𝑆𝑚 ,
𝑚 ∈ N+. Если на графе имеется перколяция, то последовательность множеств ⟨𝑆0 = 𝑉0, 𝑆1, 𝑆2, ..., 𝑆𝑚, ...⟩
бесконечна и, наоборот, траектория случайного процесса обрывается в какой-то момент времени, если
на случайной реализации𝑊 не существует какого-либо бесконечного пути 𝛾 (e1), то есть вершина e1
принадлежит конечному кластеру.

Обозначим посредством 𝑃𝑚 [𝑆] вероятность события, которое состоит в том, что в момент𝑚 траектория
случайного процесса будет находиться в состоянии 𝑆 ⊂ 𝑉𝑚 . Тогда Pr{𝜌 (𝑥) = 1} = 𝑐 и поэтому 𝑃0 [e1] = 𝑐 .
Кроме того, 𝑃1 [𝑆] = 𝑐 |𝑆 | (1 − 𝑐)2−|𝑆 | , 𝑆 ⊂ 𝐼2 = 𝑉1. Так как случайное поле на графе Γ′1 бернуллиевское и
граф Γ′1 древесный, то при𝑚 > 1 вероятности 𝑃𝑚 [·] вычисляются на основе следующего рекуррентного
соотношения

𝑃𝑚+1 [𝑆 ′] = Pr{𝑆𝑚+1 = 𝑆
′} = 𝑃𝑚 [𝑆]𝑐 |𝑆 ′ | (1 − 𝑐)2 |𝑆 |− |𝑆 ′ | , (4)

где pr[𝑆 ′] = 𝑆 , а, в противном случае, если между множествами 𝑆 ⊂ 𝑉𝑚 и 𝑆 ′ ⊂ 𝑉𝑚+1 такая связь отсутствует,
то 𝑃𝑚+1 [𝑆 ′] = 0. Это означает, что конструируемый случайный процесс с дискретным временем является
марковским. Такого типа случайные процессы были введены при конструировании случайных множеств
фрактального типа, обладающих дробной размерностью Хаусдорфа-Безиковича (см. [10], [11]). Для
их обозначения мы используем термин марковские цепи с марковским измельчением. Они связаны с
ветвящимися марковскими процессами [12].

Используя уравнение связи (4), получаем, что справедливо следующее утверждение.
Теорема 4.1. Вероятность 𝑃𝑛 (𝑆 |0, 𝑆 − 1, ..., 𝑆𝑛−1) того, что случайный процесс {𝑆𝑚 ∈ 𝑉𝑚 ;𝑚 ∈ N+}

вплоть до момента 𝑛 ∈ N обладает траекторией ⟨𝑆𝑚 ∈ 𝑉𝑚 ;𝑚 ∈ {0, 1, ..., 𝑛 − 1}; 𝑆𝑛 = 𝑆⟩, у которой 𝑆 𝑗 ≠ ∅,
𝑆 𝑗 ⊂ 𝑆 𝑗−1 × 𝐼2, 𝑗 = 0 ÷ 𝑛, равна

𝑃𝑛 (𝑆 |0, 𝑆1, ..., 𝑆𝑛−1) = 𝑐 |𝑆1 |+1 (1 − 𝑐)2−|𝑆1 |𝑐 |𝑆2 | (1 − 𝑐)2
|𝑆1 |−|𝑆2 | ...𝑐 |𝑆 | (1 − 𝑐)2 |𝑆𝑛−1 |− |𝑆 | . (5)

5. Оценка точности частичных сумм кластерного разложения. Обозначим посредством 𝑃𝑛
вероятность того, что траектория случайного процесса {𝑆𝑚 ;𝑚 ∈ N+}, сопоставленного бернуллиевскому
случайному полю на графе Γ′1 , конечна и обрывается на 𝑛-м шаге, то есть 𝑆𝑛+1 = ∅, 𝑆𝑛 ≠ ∅. Тогда
вероятность 𝑄 (𝑐) отсутствия перколяции на графе Γ1 выражается в виде ряда

𝑄 (𝑐) = 1 − 𝑐 +
∞∑︁
𝑛=0

𝑃𝑛 ,

который можно рассматривать как аналог кластерного разложения вероятности 𝑄 (𝑐) на Γ1.
При 𝑛 = 0 имеем 𝑃0 = 𝑐 (1 − 𝑐)2. А при 𝑛 ∈ N, согласно (5), –

𝑃𝑛 = 𝑐
∑︁

⟨𝑆1,𝑆2,...,𝑆𝑛 ⟩:
∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,

𝑗=1÷𝑛

𝑃𝑛 (𝑆𝑛 |𝑆1, ..., 𝑆𝑛−1) = 𝑐
∑︁

⟨𝑆1,𝑆2,...,𝑆𝑛 ⟩:
∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,

𝑗=1÷𝑛

(1 − 𝑐)2 |𝑆𝑛 |
𝑛∏
𝑗=1

𝑐 |𝑆 𝑗 | (1 − 𝑐)2 |𝑆 𝑗−1|−|𝑆 𝑗 | . (6)

Введем параметр
𝜂 = 𝑐 (1 − 𝑐) ∈ (0, 1/4] .

Учитывая, что |𝑆0 | = 1, находим, что

(1 − 𝑐)2 |𝑆𝑛 |
𝑛∏
𝑗=1

𝑐 |𝑆 𝑗 | (1 − 𝑐)2 |𝑆 𝑗−1|−|𝑆 𝑗 | = (1 − 𝑐)2
𝑛∏
𝑗=1

𝑐 |𝑆 𝑗 | (1 − 𝑐)2 |𝑆 𝑗 |−|𝑆 𝑗 | = (1 − 𝑐)2
𝑛∏
𝑗=1

𝜂 |𝑆 𝑗 | .
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Таким образом, из разложения (6) следует

𝑃𝑛 ≡ 𝑐 (1 − 𝑐)2𝑄𝑛 (𝜂) = 𝑐 (1 − 𝑐)2
∑︁

⟨𝑆1,𝑆2,...,𝑆𝑛 ⟩:
∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,

𝑗=1÷𝑛

𝑛∏
𝑗=1

𝜂 |𝑆 𝑗 | , (7)

то есть справедлива
Теорема 5.1. Вероятность 𝑃𝑛 того, что траектория случайного процесса {𝑆𝑚 ;𝑚 ∈ N+}, сопоставленного

бернуллиевскому случайному полю на графе Γ′1 , и обрывается на 𝑛-м шаге определяется формулой (7).
Теперь, нашей задачей является получение такой оценки для функций

𝑄𝑛 (𝜂) =
∑︁

⟨𝑆1,𝑆2,...,𝑆𝑛 ⟩:
∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,

𝑗=1÷𝑛

𝑛∏
𝑗=1

𝜂 |𝑆 𝑗 | ,

которая бы позволяла устанавливать гарантированную точность аппроксимаций для функции 𝑄 (𝜂),
получаемых на основе частичных сумм ряда в (7).

Запишем выражение для функции 𝑄𝑛+1 (𝜂) в виде

𝑄𝑛+1 (𝜂) =
∑︁

⟨𝑆1,𝑆2,...,𝑆𝑛+1 ⟩:
∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,

𝑗=1÷𝑛+1

𝑛+1∏
𝑗=1

𝜂 |𝑆 𝑗 | =
∑︁

∅≠𝑆1⊂𝐼2
𝜂 |𝑆1 |

∑︁
⟨𝑆2,...,𝑆𝑛+1 ⟩:

∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,
𝑗=1÷𝑛+1

𝑛+1∏
𝑗=2

𝜂 |𝑆 𝑗 | =

= 𝜂
∑︁

𝑆1∈{{1},{2}}

∑︁
⟨𝑆2,...,𝑆𝑛+1 ⟩:

∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,
𝑗=2÷𝑛+1

𝑛+1∏
𝑗=2

𝜂 |𝑆 𝑗 | + 𝜂2
∑︁

⟨𝑆2,...,𝑆𝑛+1 ⟩:
∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,

𝑗=2÷𝑛+1

𝑛+1∏
𝑗=2

𝜂 |𝑆 𝑗 | . (8)

С каждым из двух слагаемых при выборе 𝑆1 = {𝑘}, 𝑘 ∈ {1, 2} произведем следующее преобразование.
Так как в каждом из них происходит суммирование по наборам ⟨𝑆2, ..., 𝑆𝑛+1⟩, у которых 𝑆2 ⊂ {𝑘} × 𝐼2 и
𝑆 𝑗 ⊂ 𝑆 𝑗−1, 𝑗 = 3÷𝑛 + 1 с фиксированным 𝑘 , то в каждой из этих сумм заменим переменные суммирования
𝑆2 ⇒ 𝑆1 ∈ 𝐼2 и 𝑆 𝑗+1 ⇒ 𝑆 𝑗 с тем же условие суммирования ∅ ≠ 𝑆 𝑗 ⊂ 𝑆 𝑗−1 × 𝐼2, 𝑗 = 2 ÷ 𝑛. В результате оба
слагаемых первой суммы в (8), соответствующие 𝑘 ∈ {1, 2}, принимают одинаковый вид, и поэтому эта
первая сумма равна

𝜂
∑︁

𝑆1∈{{1},{2}}

∑︁
⟨𝑆2,...,𝑆𝑛+1 ⟩:

∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,
𝑗=2÷𝑛+1

𝑛+1∏
𝑗=2

𝜂 |𝑆 𝑗 | =
∑︁

⟨𝑆1,...,𝑆𝑛 ⟩:
∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,

𝑗=1÷𝑛

𝑛∏
𝑗=1

𝜂 |𝑆 𝑗 | = 2𝜂𝑄𝑛 (𝜂) . (9)

Рассмотрим вторую сумму в (8). Каждую компоненту 𝑆 𝑗 в наборах ⟨𝑆2, ..., 𝑆𝑛+1⟩ представим в виде
дизъюнктивного разложения 𝑆 𝑗 = 𝑆 ′𝑗 ∪ 𝑆 ′′𝑗 по правилу 𝑆 ′1 = {1} и 𝑆 ′′1 = {2} и при 𝑗 = 2, ..., 𝑛 + 1 установим
𝑆 ′𝑗 ⊂ 𝑆 ′𝑗−1,𝑆 ′′𝑗 ⊂ 𝑆 ′′𝑗−1. В результате рассматриваемая сумма принимает вид

∑︁
⟨𝑆2,...,𝑆𝑛+1 ⟩:

∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,
𝑗=2÷𝑛+1

𝑛+1∏
𝑗=2

𝜂 |𝑆 𝑗 | =
( ∑︁

⟨𝑆 ′2,...,𝑆 ′𝑛+1 ⟩:
𝑆 ′1={1},∅≠𝑆 ′𝑗 ⊂𝑆 ′𝑗−1×𝐼2,

𝑗=2÷𝑛+1

𝑛+1∏
𝑗=2

𝜂
|𝑆 ′𝑗 |

) ( ∑︁
⟨𝑆 ′′2 ,...,𝑆 ′′𝑛+1 ⟩:

𝑆 ′′1 ={2},∅≠𝑆 ′′𝑗 ⊂𝑆 ′′𝑗−1×𝐼2,
𝑗=2÷𝑛+1

𝑛+1∏
𝑗=2

𝜂
|𝑆 ′′𝑗 |

)
. (10)

После этого произведем такое же преобразование каждой из сумм, записанных в скобках формулы (10),
которое было проделано с первой суммой в формуле (8). После этого обе указанные суммы совпадают и,
в результате, вторая сумма в этой формуле принимает вид

𝜂2
( ∑︁

⟨𝑆1,...,𝑆𝑛 ⟩:
∅≠𝑆 𝑗 ⊂𝑆 𝑗−1×𝐼2,

𝑗=1÷𝑛

𝑛∏
𝑗=1

𝜂
|𝑆 ′𝑗 |

)2
= 𝜂2𝑄2

𝑛 (𝜂) . (11)

Учитывая (9) и (11), приходим к выводу, что справедливо следующее утверждение.
Теорема 5.2. Функции 𝑄𝑛 (𝜂), 𝑛 ∈ N удовлетворяют следующей системе уравнений

𝑄𝑛+1 (𝜂) = 2𝜂𝑄𝑛 (𝜂) + 𝜂2𝑄2
𝑛 (𝜂). (12)
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На основе полученного уравнения (12), получим теперь искомую оценку для функций 𝑄𝑛 (𝜂), 𝑛 ∈ N.
Положим, что имеет место неравенство 𝑄𝑛 (𝜂) ≤ 𝐴(𝜂) (𝑀𝜂)𝑛−1, 𝑛 ∈ N с постоянной𝑀 > 0 и 𝐴(𝜂) =𝑄1 (𝜂) =
(1 + 𝜂)2 − 1. Докажем это неравенство индукцией по 𝑛 ∈ N. Для этого построим индукционный шаг,
допустив, что указанное неравенство имеет место дл фиксированного 𝑛 ∈ N. Тогда, на основании (12) и
сделанного допущения, имеем

𝑄𝑛+1 (𝜂) ≤ 2𝜂𝐴(𝜂) (𝑀𝜂)𝑛−1 + 𝜂2𝐴2 (𝜂)(𝑀𝜂)2(𝑛−1) = 𝐴(𝜂) (𝑀𝜂)𝑛
( 2
𝑀

+𝐴(𝜂)𝜂𝑀𝑛−2
)

Учитывая, что 𝜂 = 𝑐 (1 − 𝑐) ≤ 1/4, имеем 𝐴(𝜂) ≤ 1/16, потребуем, чтобы (2 + 𝐴(𝜂)𝜂𝑛𝑀𝑛−1) ≤ 𝑀 при
𝑛 ∈ N. Для этого достаточно, чтобы 𝑀𝜂 ≤ 1 и max(2 + 𝐴(𝜂)𝜂) = 𝑀 . Положив 𝜂 = 1/4, найдем значение
𝑀 = 2 + (3/24)2, которое удовлетворяет также условию𝑀𝜂 ≤ 𝑀/4 < 1. ■

Сформулируем полученный результат в виде отдельного утверждения.
Теорема 5.3. Вероятность перколяции 𝑃 (𝑐) бернуллиевского случайного поля {𝜌 (𝑥);𝑥 ∈ 𝑉 } на дереве

Кэйли со степенью вершин 𝑠 = 3 представляется в форме 𝑃 (𝑐) = 𝑐 (1 −𝑄3 (𝑐)), где для функции 𝑄 (𝑐) имеет
место сходящееся при 𝑐 ∈ (0, 1) разложение

𝑄 (𝑐) = (1 − 𝑐)2
∞∑︁
𝑛=1

𝑄𝑛 ,

в котором для вероятностей𝑄𝑛 справедлива оценка𝑄𝑛 ≤ 𝐴(𝜂) (𝑀𝜂)𝑛−1, 𝑛 ∈ N, где𝐴(𝜂) = (1+𝜂)2−1 ≤ (3/4)2
и𝑀 = 2 + (3/24)2 при 𝜂 = 𝑐 (1 − 𝑐).

5. Заключение. Для рассмотренной в работе перколяционной модели вероятность перколяции 𝑃 (𝑐)
выражается явно в виде элементарной функции от параметра 𝑐 . Эта функция находится явно как «ветвь»
одной из двух функций, которые появляются в результате трансверсального пересечения графиков
аналитических функций от 𝑐 ∈ (0, 1). Это приводит к тому, что 𝑃 (𝑐) не является аналитической функцией,
так как она равна в точности нулю при 𝑐 ∈ (0, 𝑐∗), 𝑐∗ = 1/2, но не равна нулю при 𝑐 ∈ (𝑐∗, 1). Таким образом,
несмотря на то, что каждое слагаемое, входящее в кластерное разложение является полиномом от 𝑐 ,
аппроксимации для функции 𝑃 (𝑐) невозможно строить на основе ряда по степеням 𝑐𝑛 , 𝑛 ∈ N. Однако
доказанное в работе утверждение показывает, что аппроксимации вероятности перколяции 𝑃 (𝑐) на
дереве Кэйли с степенью вершин 𝑠 = 3 можно строить в виде частичных сумм кластерного разложения
во всем диапазоне изменения концентрации 𝑐 ∈ (0, 1), а не только при 𝑐 > 𝑐∗, где 𝑃 (𝑐) ≠ 0. При этом
каждая частичная сумма является полиномом от 𝑐 так, что при неограниченном возрастании порядка
аппроксимации степень полинома также возрастает неограниченно. Существенно, что оценки точности
таких аппроксимаций пропорциональны степеням [𝑐 (1 − 𝑐)]𝑛 , 𝑛 ∈ N. И это происходит несмотря на
то, что функция 𝑃 (𝑐) зависит от 𝑐 не аналитически в окрестности точки 𝑐∗, которая является ее точкой
непрерывности, а производная 𝑃 ′ (𝑐) терпит в этой точке разрыв.

В связи с полученным результатом, возникает принципиальный вопрос. Сохраняется ли такое
положение для вероятности перколяции на периодических графах, которые являются традиционным
и основным объектом изучения в дискретной теории перколяции? В настоящее время априорные
оценки точности приближений, получаемые на основе частичных сумм кластерного разложения для
периодических графов посредством так называемых контурных оценок для внешних границ конечных
кластеров [6]–[8], которые дают вклад в кластерное разложение, не позволяют дать однозначного ответа на
этот вопрос. В этой связи сделаем еще одно существенное, на наш взгляд, замечание. Правая производная
𝑃 ′ (𝑐) принимает конечное значение, что является следствием указанного выше факта, что 𝑃 (𝑐) получается
как ветвь трансверсального и, в то же время, не ортогонального по отношению другу к другу графиков
пары гладких функций. Но конечность производной в критической точке 𝑐∗ противоречит мнению о том,
что перколяция аналогична фазовым переходам второго рода в равновесной статистической механике,
так как для таких бифуркационных переходов правая производная по температуре равна бесконечности
[13]. Это противоречие, в свою очередь, указывает на то, что для описания поведения функции 𝑃 (𝑐) в
окрестности точки 𝑐∗ неприменим подход на основе «ренорм-группы» (см. по этому поводу [14], [15],
[16]) типа ренорм-группы Каданова, так как не возникает понятия критического индекса параметра
порядка, которым в данном случае является функция 𝑃 (𝑐).
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