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Abstract. We investigate the linear conjugation problem for polyanalytic functions using function theory and
Cauchy-type integrals. We explicitly construct a canonical matrix-function by using the recurrence procedure
and use it to study the linear conjugation problem. We found a solutions of the linear conjugation problem and
given a formula for its index by using Cauchy type integrals. We got a representation of the solution of the linear
conjugation problem through the canonical matrix-function, which is constructed explicitly.
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Annoranms. Onumpasich Ha Teopmio GyHKIWIT n nHTEerpass Truna Komm B pabore paccMaTpuBaeTcs 3a/1ada JINHEH-
HOTO COIIPSI?KEHUS JJIsI TOJIMAHAINTUIeCKUX GyHKIwmi. IIpumenss npomnesypy peKyppeHTHOCTH, CTPOUTCS KAHOHMU-
geckas MarpuyHas (PyHKIUs, KOTOpas UCIOJIb3yeTCs [l U3yUeHUs 3aJa9y JIMHEHHOro conpskerns. Mbl HAILIH
pelenne 33/1a497 O JIMHEHHOM COTPSI)KeHNN U 1aju (HhOPMYJTy IJIsl ee MHIEKCA C TOMOIIHI0 MHTEerpaJioB trma Korrm.
ITomydeno mpencraBsieHme pemnreHusT 33a<IU JIMHEHHOTO COLPSIXKEHUS Uepe3 KAHOHWIECKYI0 MATPHILy-()yHKIHIO,
KOTOpasi IOCTPOEHA SABHO.

KiroueBsle cioBa: 3agaun smHeiiHOro conpsizkenust, ¢popmyna ['ypea, cunrynsapusiit narerpan Ko, kaHOHI-
qecKue MaTPHUIB-(DYHKINN, CHHIYISPHbIE HHTErPAIbHbIE yDABHEHUS.

Jas nurupoBanusi: Jan Kyanr Beronr. 2020. 3amada smueiinoro coupsikenus. IIpuknannas maremaruka &
Dusuka, 52(2): 55—-61. DOI 10.18413/2687-0959-2020-52-2-55-61.

1. The Goursat Formula. Let D be a subset of C, and u be a C™ function on D, u(z) = u(z,y) in
a complex variable z = x + ¢y. This function is called poly-analytic if it is a solution of the equation

o™u
o = O (1.1)

o _1(0 0
0z 2\0x oy)’

To emphasize on the dependency of n, these functions are also called n analytic (bi-analytic when n = 2).
It is clear that when n = 1 the equation (1.1) is the Cauchy-Riemann condition and its solutions are
analytic functions.

where



Linear Conjugation Problems 56

It is well known that any n— analytic function u is represented in the form

Zn—l

u@ﬁwma+%ﬂ@+%%@%ﬁ~+@iji

Pn(2), (1.2)

where ¢;(z) are analytic functions on D. When n=2 the formula takes the name Goursat, that we conserve
also in the general case for any n. In particular, from this formula, it follows that the analytic functions
are infinitely differentiable in D.

In (1.2) it is easy to put an induction on n, if it is used on the relation

16 = Ko (2), (1.3

for any natural k£ and analytical function ¢. In fact, the Goursat formula is true for (n — 1) analytic
functions and function u € C™(D) satisfying the equation (1.1). So

n—1
Q“‘g ::¢n(2%

82”_1

where ¢,,(z) is an analytic function, and from (1.3)

anfl znfl
o1 u(z) — m%(z) =0.

According to the induction, hence the validity of the formula (1.2) holds for all n.
From (1.3) and (1.2), we have

991y =i

Put ) .
U= (U,...,Uy), U;=0""1u/ozi71,
(1.5)
¢:(¢17"'7¢n)a P:(Pl])?7
where P(z) is a upper triangle matrix determined by
Zi—t
Pi‘ Z)= 7T/ ] > 1.
®=G-a
So the relationship (1.4) can be written in the matrix form
U = Po. (1.6)

It is easy to check that the determinant of P is equal to 1. Therefore, relation (1.6) can be transformed
to ¢ = P7'U. In other words, in Goursat formula (1.2), the set of analytic functions ¢; in the same way
it is determined by n-analytic function w.

For the upper triangle elements of the inverse matrix P!, we have the following expression

(_1)j_i2j_i ] > . (17)

(P™Hij(2) = e

In fact, let A be the matrix with elements

(1, j-i=1,
A”{Q j—i#1

Then, we have the identical expression

k 1a j_i:kv
R <k <mn_—
(A"®);5 {07 itk 0<k<n-—1,

clearly, A™ = 0. From this notation, we can write
n—1 Zk
_ 2 Ak
Pz)=>_ A"
k=0
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So, this sum coincides with the series in all £ > 0, P(z) = exp(ZA). Therefore,
P7(2) = exp(—2A) = Z(—1kak,

this coincides with (1.7).

Let D be a neighborhood domain of the infinitely distant point co, this means, it contains the exterior
of {|z| > R}. Suppose, in the notation (1.5), the poly-analytic function u(z), with |z| > R, satisfies the
following inequalities

U;(2)] <Cl2I"9, j=1,...,n, (1.8)

with some integer [ or, equivalently, U;(z) = O(|z|'~7) when z — co.
Due to (1.6), (1.7), we have the following expressions for the components ¢y, of ¢

) =S N,
2 G-

Therefore, the similar inequalities (1.8) are also valid for these components. We also have
$ij(2) = O(|z]"7) when 2 — 00, j=1,...,n, (1.9)

implies (1.8) with some other constant C.

2. Linear Conjugation Problems. Let I' be a smooth oriented contour on the complex plan, which
is composed of simple contours I'y, . .., I';,,. Therefore, the complement is the open set D = C\I" composed
of connected components Dy, Dy, ..., D,,, where Dy is unbounded and contains a neighborhood of oo,
the others are bounded. There is no lost of generality, we can assume that

8D0:F1UUFmO, 1§m0§m (21)

Let’s designate C(D) denote the class ¢ € C(D), that in every domain D, is continuously extensible
to the boundary. Obviously, we can define the unilateral boundary values of ¢(t) by T (t) = lim ¢(z) at
points tinI', when the point z — t belongs to the left (right) of I" with a superior signal (inferior). It is
clear that this function is continuous.

Together with this class, we also consider the Holder class. Let C*(G) be the class of functions ¢
satisfying Holder condition in domain G, i.e.

[p(21) = p(22)] < Clzr — 2", 2 €G,

with some exponent 0 < p < 1.1t is clear that the conditions ¢ € C*(G) and ¢ € C*(G) are equivalent. In
this notations, ¢ € C’“(ZA)) by definition, means that ¢ € C*(Dy) for each bounded sub-domain Dy C D.
Therefore, ¢ € C*(D;), 1< j <m, and ¢ € C*(Do N {|z| < R}), for any R > 0.

Given n x n matrix function B(t) = (B;;(t))} on the contour I' of the class C*, whose determinant is
different from zero. Consider poly-analytic function u satisfying

&ty ~
Uj: — ECH(D), 1§j§n,
9z~ (2.2)

Uj(z) =O(|z"7) when z = 00, j=1,...,n,

Consider the linear conjugation problem:

o\ T & TN :
(3zi—1) - _z;Bij (8,21—1) =fi, 1<i<n. (2.3)
J:
With the substitution U = P¢, this problem is the linear conjugation problem

9T —Go~ =y, (2.4)

For a analytic vector function ¢ € C“(ﬁ) with the matrix coefficient G = P~!BP and the right side
g = P~1f. Due to (2.2), we have

deg ¢; <l —j, whenz =00, j=1,...,n. (2.5)
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With the help of the Cauchy type integral

(Ip)(2) ! /Fsa(t)dt, (2.6)

:% t—z

this problem, by the usual manner, may be reduced to a equivalent system of the singular integral equation
(see, for example: «Singular integral equations», [N. I. Muskhelishvili, 1946]).

Theorem 2.1. If ¢ € CH(T), then analytic function ¢ = I¢ disappears on the unbounded domain
and belongs to the class C“(ﬁ), and its contour values satisfies the Sokhoski-Plemelj formulas

20T = +p + S, (2.7)
with 1 [ p(t)dt
_ ¥
(S¢)(t0) = = /F 2, tger (2.8)

Cauchy singular integral. Where, I as a linear operator, is limited by C*(I') — C’“(ﬁ).
The inverse is also true: any analytic function ¢ € C*(D) that satisfies the condition deg ¢ < se—1 in
unbounded domain with some integer number 2, is inclusively represent-able as ¢ = Ip + p with density

¢ € C*(T') and polynomial p(z), subjected to the conditions
degp < & —1, / o(t)q(t)dt =0, degg < —ae — 1,
r

where the last condition of orthogonality is understood in the relation to the polynomials q(z). Where, the
polynomials of negative degree are assumed as equal to zero.

The last affirmation of the theorem occurs in the fact that, in the neighborhood of oo, the function
Iy possesses the decomposition in Laurent series:

(Ip)(z) = chz_k_l, ok = o(t)thdt. (2.9)
k=0

211 T

In particularly, for an integer number & < —1 , the condition deg I < & — 1 can be expressed in zero
equality form

for polynomial ¢ has deg q < —&e — 1.

In particularly, from the theorem, it follows that the singular operator Sy is limited on the space
cH(T).

3. Functions of canonic matrices. Suppose that the matrix-function G € C*(T') is invertible. By
definition, an analytic matrix function X (z) out of I" is called canonic in relation to G if it belongs to the
class C*(D), has finite order in the unbounded domain, satisfies the relation

Xt =G6x", (3.1)

and the condition
A= lim X(z)diag(z*',...,2*"), detA #0, (3.2)

zZ—00

in the unbounded domain with some integer number 2;.
By the theory of singular equations, there exists a matrix G such that the integer numbers &, ..., &,
uniquely determined by permutation, and called partial index of G, and

1
&1 +...+ae,=IndG, IndG= %lndetG(t)“. (3.3)

For the case n = 1, the condition (3.2) and the equality (3.3) are

A= li_>m 2*X(2) #0, &==IndG. (3.4)

In this case, the canonic function is built directly. Suppose that m = 1, i.e the " contour is simple,
the conjunction Dy (D;) stays inside (outside) of this contour and the point zy € Dy is fixed. Consider
Go(t) = (t — 29)™, t € I, where the superior (inferior) is selected if contour T' is oriented counter-
clockwise. Obviously, the Cauchy index of G and Gq coincide and the function

- 1, z e Do,
Xo(2) = { (z—20)"", z€ Dy,
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is Gy canonic, or satisfies the conditions (3.1), (3.4) in relation to Go.

Observe that the Cauchy index of G; = GglG is equal to zero, therefore InG; € C*(T'). Consider
one integral Cauchy type Y = I(In G;), this function belongs to a C“(ZA)), disappears in the infinite, and
according to (2.7), satisfies the condition Y+ — Y~ = In G;. Therefore, X = e Xy, and G are canonical.
The general case when I' = I'; U ... UT'y,, G; is the restriction of G on I'; and X is the G canonic
function. So the product X = X; --- X,, is a G canonic function.

From this, the canonic matrix function X (z) corresponding to G, the solution of the problem (2.4),
where

degp <1-1, (3.5)

can be constructed explicitly.
In fact, due to (3.1), vector function v = (¢1,...,%,) = X '¢ satisfies the condition of contour
T —9p~ = (X+)71g due to (3.2), condition (3.5) becomes to

degp; <l+a;—1, 1<j<n.
As consequence, theorem 2.1 can be applied to v, and we have

W)/F(Xﬂ(t%?(t)dup(z)_

t—z

As a observed above, this function in the neighborhood of co possesses the decomposition in Laurent
series of the form (2.9) with coefficient

1 .
= —— [ (X))t at, j< -1
0= =5 [ @ e <1
and ag + ... + as2® = p(z). That why the condition degvy, < I+ s, — 1 reduces in the fact that
degpr <l+ &, — 1 and

/F (X)) Ng(Oae()dt =0, 1<E<n,

where the polynomials g has deg g < —(I+ ) — 1. Obviously, this conditions guarantees that the order
in the unbounded domain of vector function diag(z=*1,...,27®)y(2) doesn’t exceed [ — 1.
In this way, all solutions of the original problem (2.4), (3.5) are described by the formula

¢=XIg+p), g=(X""g,

where polynomial vector p = (p1, ..., p,) has deg pr, < [+ae, —1, and the density g satisfies the conditions
of orthogonality

/gk(t)qk(t)dt = 0, 1 § k S n,
r

where the polynomial gx has degqr < —(I 4+ &) — 1.

In particularly, the index & = Ind G + nl.

In the case of the problems (2.4), (2.5), the order at infinity of function ¢; has to be aligned and is
reduced to the form (3.5), this can be made with the help of the diagonal matrix function

1, ZED\D(),

Q(z) N { diag(la (Z - 20)717 SRR (Z - Zo)lin)’ z € Do, <36)

where zg € D\ Dy is fixed.
Remember that, in accordance with (2.1) the boundary of the unbounded domain Dy is composed of

components I';, 1 < j < my, of contour I'. The problem ¢ = Q;g (2.4) is replaced to the linear conjugation
problem

9T —Go~ =3, (3.7)
where G = (Q1)"*GQ, and the right side § = (Q 1) 1g. The condition (2.5) at infinity become to (3.5).
Due to (1.2), we have the following result.
Theorem 3.1. Let )~((z) be a function of canonic matriz corresponding to coefficient matriz G =
(QT)"'P7IBPQ™, and &;, 1 < j <n, be their partial indez.
To solve the problem (2.2), (2.8) it is necessary and sufficient that condition f = (X+)~"1(QT)1P~Lf
satisfies the following orthogonality

/ fe@®@t)dt =0, 1<k<n, (3.8)
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where the polynomials G, has degqr, < —(1+ &) — 1 ( polynomials with negative degree are assumed as
zero ).
Under these conditions, the general solution of this problem is given by the formula

zi—1
w2 = Loy
4(2) = Q)X (2) [2; 104 +ﬁ<z>] , (39)

where the polynomial vector p = (p1,...,pn) satisfies the condition degpy <!+ &, — 1, 1 <k < n.
From the theorem, the space of the solution of homogeneous system has the same dimension with the
class of the polynomial vector p = (p1, ..., D) where degpy <1+ &, — 1. So this dimension is equal to

st=(+a)t+.. . +(1+a,)".
In the same manner, the number of conditions that is solved linearly independently is equal to
sT=(-l—-&1) +...+(-l—2,)",

where for an integer s put s* = (|s| + s5)/2. In particular, the index s — s~ of the problem is equal.

st —s™ =nl+IndG. (3.10)
We know that det O (1)
~ et Q (¢
= —= B.
det G det Q7 (1) det

First suppose that all contours I'; in (2.1) are oriented negatively with respect to the Dy, i.e counterclock-
wise. Then QT (t) =1, t € I'\ Dy and

det QT (t) =1,
det Q™ (t) = (t — 2) """ V/2 1 € T;,1 < j < my, (3.11)
therefore
~ 1 detQ (¢ —n(n—1
Z* S Q) _onlnol) (3.12)
= 2mi - det Q* (1) [r, 2
from (3.10) the index s™ — s~ of the problem is equal
-1
st — s~ =IndB +nl — %

For arbitrary n, let B in (2.3) be an upper triangular matrix, i.e B;; = 0 when ¢ > j. We have matrix
P in (1.5) is upper triangular. Therefore, this property possessed also the matrix G = QY 1P'BPQ~.
Then, the canonic matrix - function G can be explicitly constructed from a recursive procedure.

Theorem 3.2. Let G € C*(I') be a upper triangular matriz, i.e G;; = 0 to i > j, and Gy (t) # 0,
tel, 1<1i<n. Then the canonic matriz X is also upper triangular and its partial index s; = IndGy;.

Prove. First, suppose that all diagonal elements of G;; equal 1. Write matrix X in the form X = 14Y,
where Y'(z) disappears in co and its element Y;; = 0 to i > j. So (3.1) turns into Y* =GY~ + G — 1 or
Yt —-Y " =(G—-1)+ (G —1)Y . Write this relation coordinately

+ - _ .. YT ; 7
ViV =G+ qu GaY;, i<j. (3.13)

From this, we have the following equalities

Y’I’L+71,n - Ynifl,n = anl,'ru (3140,)
Yo o =Yoo =Cnon

S - 3.14b

Y+— }/n 2n_Gn 2n+Gn 2,n— IY —1,n> ( )
Yn+3n2 Y_3n Q*Gn 3n—2,

Yn+—3,n 1 Yni 3n—1 — Gn 3,n—1 + Gn 3,n— 2Y7 2,n—1> (3.14(2)

+ — - -
Ynfgyn -Y, —3,n Gn 3,n + Gn 3,n— 2Y n—2,n + Gn 3,n— 1Y —1,n

n

and so on.
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Therefore, using theorem 2.1, we have
Yn—l,n = IGn—l,na (315&)

Yn72,n71 = IGn72,n71>

_ 3.15b
Yn—Q,n = I(Gn—Q,n + Gn—Q,n—IYn_Ln)v ( )

Yn—3,n—2 = IGn—S,n—Q»
Yn73,n71 = I(an?;,nfl + Gn73,n72Yn7727n71); (3156)
Y"—37" = I(G"—37" + G"—37"—2Yn_—2,n + Gn—37n—1Yn_—1,n)’

and so on. As a consequence, Y is completely determined and X = 1 + Y is canonic with a¢; = 0 in
relation to a triangular matrix G with diagonal elements G;; =1, 1 < i < n.

For the general case, where a triangular matrix G with arbitrary diagonal elements, the problem is
reduced to the case considered above by presentation G in the product form

G = G(l)G(Q), G(l) = diag (G11,...,Gnn), (3.16)

where the diagonal elements of the triangular matrix G,y are equal to 1. Let X(;); be a canonic function
corresponding to the coefficient Gy;.
In other words, by (3.1), (3.2), Xa)i = GiiX (), and X(1);(2)z® — 1 as 2z — 0o, where 2; = Ind Gj;.
So
X(l) :diag (X(l)la---aX(l)n) (317)

G(1) is canonic, this is, it satisfies (3.1), (3.2) in relation to the correlation G(y). Let us consider the
triangular matrix in I’
~ o B
G = (X)) G X, (3.18)
where the diagonal elements of 6(2) are equal to 1.
So, by what it has been proven above, there exists

lim X(Q)(Z) =1.

zZ—00

We will affirm that the canonic matrix X to the original coefficient G' is an X = X(1)X(2). In fact, the
equality

X+

(I)X(Jg) = G(nG(g)Xﬁ X

1)
having in mind the equality X}, = G(1)X(;, passes to X5 = é(Q)X(;).
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