ЧАСТИЧНО КОМПОЗИЦИОННЫЕ ФОРМАЦИИ С ЗАДАННОЙ СТРУКТУРОЙ. I

Авторы

Ключевые слова:

конечная группа, формация групп, подгрупповой функтор, $\tau$-замкнутая формация, $n$-кратно $\omega$-насыщенная формация, тотально $\omega$-насыщенная формация, $n$-кратно $\omega$-композиционная формация, тотально $\omega$-композиционная формация, полная решетка формаций, полная подрешетка.

Аннотация

Пусть $\omega$ "--- непустое множество простых чисел, $n$ "--- целое неотрицательное число и $\tau$ "--- подгрупповой функтор в смысле
А.~Н.~Скибы. Через $\tau_{sn}$ обозначим также подгрупповой функтор такой, что $\tau_{sn}(G)$ "--- множество всех субнормальных подгрупп из $G$ для любой
группы $G$. В работе исследуются связи между различными решетками формаций. Получены достаточные условия, при которых решетка формаций $\mathrm{H}^{\omega_l}$
является полной подрешеткой решетки формаций $\Theta^{\omega_c}$, где $\mathrm{H}$ и $\Theta$ "--- некоторые полные решетки формаций. В частности, доказано, что для
любого подгруппового функтора $\tau$ такого, что $\tau\le\tau_{sn}$, решетка всех $\tau$-замкнутых $n$-кратно (тотально) $\omega$-насыщенных формаций является полной
подрешеткой решетки всех $\tau$-замкнутых $n$-кратно (соответственно тотально) $\omega$-композиционных формаций. Кроме того, установлено, что если $|\omega|>1$,
$m>n\ge 0$, где $m$ и $n$ "--- целые числа, и $\tau\le\tau_{sn}$, то решетка всех $\tau$-замкнутых $m$-кратно $\omega$-композиционных формаций не является подрешеткой
решетки всех $\tau$-замкнутых $n$-кратно $\omega$-композиционных формаций.

Скачивания

Данные скачивания пока недоступны.

Просмотров аннотации: 23

Опубликован

2021-09-30 — Обновлена 2021-09-30

Версии

Как цитировать

Щербина, В. (2021). ЧАСТИЧНО КОМПОЗИЦИОННЫЕ ФОРМАЦИИ С ЗАДАННОЙ СТРУКТУРОЙ. I. Прикладная математика & Физика, 53(3), 171–204. извлечено от http://maths-physics-journal.ru/index.php/journal/article/view/57

Выпуск

Раздел

Математика