ЗАДАЧА ДИРИХЛЕ ДЛЯ ОБОБЩЕННОГО УРАВНЕНИЯ ЛАВРЕНТЬЕВА-БИЦАДЗЕ С ПРОИЗВОДНОЙ ГЕРАСИМОВА-КАПУТО
Аннотация
Исследована задача Дирихле для дифференциального уравнения в частных производных второго
порядка с дробной производной по временной переменной в прямоугольной области. В случае если порядок
дробного дифференцирования равен двум, рассматриваемое уравнение обращается в уравнение Лаврентьева –
Бицадзе. Рассмотрены вопросы доказательства существования и единственности регулярного решения.
Скачивания
Просмотров аннотации: 132
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2020 Прикладная математика & Физика

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.