Новый класс гистерезисных преобразователей: обобщенный люфт со случайными направляющими функциями
DOI:
https://doi.org/10.52575/2687-0959-2023-55-2-143-156Ключевые слова:
гистерезис, люфт, случайный процессАннотация
В работе приводится формальное определение, устанавливаются свойства стохастического гистерезисного преобразователя — обобщенного люфта. С помощью трехэтапной конструкции, включающей в себя последовательное определение входно-выходных соответствий на монотонных, кусочно-монотонных, непрерывных входах, введенный преобразователь трактуется как оператор, зависящий от своего начального состояния как от параметра, сопоставляющий всякому допустимому входу случайный процесс, параметры которого, в свою очередь, определяются свойствами направляющих функций обобщенного люфта. Доказывается корректность преобразователя, приводятся явные формулы для первой и второй моментных функций. Теоретические построения работы иллюстрируются результатами вычислительных экспериментов.
Скачивания
Библиографические ссылки
Борзунов С. В., Семенов М. Е., Сельвесюк Н. И., Мелешенко П. А. 2019. Гистерезисные преобразователи со случайными параметрами. Математическое моделирование. Т. 31(7). С. 109-126. EDN: KWHLZJ. DOI: 10.1134/S0234087919070074
Борзунов С. В., Семенов М. Е., Сельвесюк Н. И., Мелешенко П. А., Соловьев А. М. 2021. Стохастическая модель гистерезисного преобразователя с доменной структурой Математическое моделирование, 33(9): 60–86. EDN: XTIALM. DOI: 10.20948/mm-2021-09-05
Красносельский М. А., Покровский А. В. 1983. Системы с гистерезисом. М., Наука, 272.
Медведский А. Л., Мелешенко П. А., Нестеров В. А., Решетова О. О., Семенов М. Е. 2021. Динамика гистерезисно-связанных осцилляторов Ван-дер-Поля: Метод малого параметра. Известия РАН. Теория и системы управления, 4: 7–26. DOI: 10.31857/S0002338821040107
Belhaq M., Bichri A., Der Hogapian J., Mahfoud J. 2011. Effect of electromagnetic actuations on the dynamics of a harmonically excited cantilever beam. International Journal of Non-Linear Mechanics, Elsevier. DOI: 10.1016/j.ijnonlinmec.2011.03.001
Benabou A., Cl´enet S., Piriou F. 2003. Comparison of Preisach and Jiles–Atherton models to take into account hysteresis phenomenon for finite element analysis. Journal of Magnetism and Magnetic Materials, 261(1): 139–160.
Brokate M., Krejˇc´ı P. 2013. Optimal control of ODE systems involving a rate independent variational inequality. Discrete and Continuous Dynamical Systems – Series B. 18: 331–348.
Bouc R. 1967. Forced vibration of mechanical systems with hysteresis. Proceedings of the Fourth Conference on Nonlinear Oscillation. Prague, Czechoslovakia, p. 315.
Carboni B., Lacarbonara W. 2016. Nonlinear dynamic characterization of a new hysteretic device: experiments and computations. Nonlinear Dynamics, 83: 23–39. https://doi.org/10.1007/s11071-015-2305-9
Charalampakis A. E., Koumousis V. K. 2008. Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm. Journal of Sound and Vibration, 314 (3–5): 571–585.
Charalampakis A. E., Koumousis V. K. 2009. A Bouc–Wen model compatible with plasticity postulates. Journal of Sound and Vibration, 322, pp. 954–968.
Chtouki, A., Lakrad, F., Belhaq, M. 2020. Quasi-periodic bursters and chaotic dynamics in a shallow arch subject to a fast–slow parametric excitation. Nonlinear Dynamics, 99: 283–298. https://doi.org/10.1007/s11071-019-05082-7
Davino D., Krejˇc´ı P., Pimenov A. et al. 2016. Analysis of an operator-differential model for magnetostrictive energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 39: 504–519.
De Domenico, D., Quaranta, G., Ricciardi, G., Lacarbonara, W. 2022. Optimum design of tuned mass damper with pinched hysteresis under nonstationary stochastic seismic ground motion. Mechanical Systems and Signal Processing, 170: 108745.
Duhem P. 1987. Die dauernden Aenderungen und die Thermodynamik. I. Z. Phys. Chem. 22: 543–589.
Dupre L. R., Van Keer R., Melkebeek J.A.A. 1999. Identification of the relation between the material parameters in the Preisach model and in the Jiles–Atherton hysteresis model. Journal of Applied Physics, 85(8): 4376–4378.
Kottaria A. K., Charalampakis A. E., Koumousi V. K. 2014. A consistent degrading Bouc–Wen model. Engineering Structures 60: 235–240.
Formica G., Lacarbonara W. 2020. Asymptotic dynamic modeling and response of hysteretic nanostructured beams. Nonlinear Dynamics, 99(1): 227–248.
Gavioli C., Krejˇc´ı P. 2021. Control and controllability of PDEs with hysteresis. Applied Mathematics & Optimization, 84: 829–847.
Ikhouane F. 2018. A survey of the hysteretic Duhem model. Archives of Computational Methods in Engineering, 25(4): 965–1002.
Ikhouane F., Rodellar J. 2005. On the Hysteretic Bouc–Wen Model. Nonlinear Dynamics,42: 63–78.
Korman C.E. Mayergoyz I.D. Review of Preisach type models driven by stochastic inputs as a model for after-effect. Physica B. 233: 381–389.
Kottaria A.K., Charalampakis A.E., Koumousi V.K. 2014. A consistent degrading Bouc–Wen model. Engineering Structures 60: 235–240.
LacarbonaraW., Tal`o M., Carboni B., Lanzara G. Tailoring of Hysteresis Across Different Material Scales. In Collection: M. Belhaq (ed.), Recent Trends in Applied Nonlinear Mechanics and Physics, Springer Proceedings in Physics 199:227–250. https://doi.org/10.1007/978-3-319-63937-6_13
Lin C.-J., Lin P.-T. 2012. Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model. Computers and Mathematics with Applications, 64: 766–787.
Mayergoyz I. D. 1986. Mathematical models of hysteresis. Physical Review Letters, 56(15): 1518–1521.
Mayergoyz I., Dimian M. 2003. Analysis of spectral noise density of hysteretic systems driven by stochastic processes. Journal of Applied Physics, 93(10): 6826–6828.
Mayergoyz I. D., Dimian M. 2005. Stochastic aspects of hysteresis. Journal of Physics: Conference Series, 22: 139–147.
Padthe, A.K., Drincic, B., Oh, J. et al. 2008. Duhem modeling of friction-induced hysteresis. IEEE Control Systems Magazine, 28: 90–107. DOI: 10.1109/MCS.2008.927331
Preisach F. 1935. ¨Uber die magnetische Nachwirkung. Zeitschrift f¨ur Physik. 94(5–6): 277–302.
Rachinskii D. 2016. Realization of Arbitrary Hysteresis by a Low-dimensional Gradient Flow. Discrete & Continuous Dynamical Systems - B, 21: 227–243.
Просмотров аннотации: 121
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2023 Прикладная математика & Физика
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.