О дифференциальном неравенстве для неявной управляемой системы
DOI:
https://doi.org/10.52575/2687-0959-2024-56-3-181-192Ключевые слова:
управляемая система, неявное дифференциальное уравнение, краевая задача, существование и оценки решений, дифференциальное включениеАннотация
В статье исследуется неявная дифференциальная управляемая система, описываемая не разрешенными относительно производной дифференциальными уравнениями первого порядка. Получены условия существования и оценки решений в виде теорем о дифференциальных неравенствах типа теоремы Чаплыгина. Используются методы теории многозначных отображений в частично упорядоченных пространствах и ранее полученные автором результаты о неявных дифференциальных включениях. В первой части работы приводится утверждение о разрешимости в частично упорядоченном пространстве операторного включения, порождаемого многозначным отображением двух аргументов, по одному из которых оно накрывающее, а по другому — антитонное. Утверждение имеет вид теоремы сравнения с решением соответствующего операторного неравенства. Во второй части работы рассматривается краевая задача для системы неявных дифференциальных включений. Приводятся условия разрешимости (в классе абсолютно непрерывных функций), оценки решений, условия существования решения с наименьшей производной. В третьей основной части с использованием приведенных во второй части результатов исследуется двухточечная краевая задача для неявной дифференциальной управляемой системы. Траектория предполагается абсолютно непрерывной, управление — измеримым. Получены условия разрешимости, оценки решений, условия существования решения с наименьшим управлением и с траекторией, имеющей наименьшую производную.
Скачивания
Библиографические ссылки
Закалюкин И.В. Управляемость механических систем вблизи подмножества вырождения неголономных связей. Известия Российской академии наук. Теория и системы управления. 2010;6:23–31.
Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Гос. изд-во физ.-мат. литературы; 1959. 916 с.
Пилия А.Д., Федоров В.И. Особенности поля электромагнитной волны в холодной анизотропной плазме с двумерной неоднородностью ЖЭТФ. 1971;60(1):389–399.
Борисович Ю.Г., Гельман Б.Д., Мышкис А.Д., Обуховский В.В. Введение в теорию многозначных отображений и дифференциальных включений. Изд. стереотип. – М.: ЛИБРОКОМ; 2016. 224 с.
Жуковская Т.В., Серова И.Д. Оценка решения неявного дифференциального включения второго порядка. Современные методы теории функций и смежные проблемы : Материалы Международной конференции. Воронежская зимняя математическая школа, Воронеж, 27 января – 01 февраля 2023 года. 2023;149–151.
Гельман Б.Д. О локальных решениях вырожденных дифференциальных включений. Функциональный анализ и его приложения. 2012;46(1):79–83.
Серова И.Д. Исследование краевой задачи для дифференциального включения. Вестник российских университетов. Математика. 2023;28(144):395–405.
Чаплыгин С.А. Новый метод приближённого интегрирования дифференциальных уравнений. М.: Наука; 1950. 106 с.
Walter W. Differential and Integral Inequalities. Springer Verlag. Berlin. 1970;710–713.
Жуковский Е.С. Об упорядоченно накрывающих отображениях и неявных дифференциальных неравенствах. Дифференциальные уравнения. 2016;52(12):1610–1627.
Бенараб С., Жуковская З.Т., Жуковский Е.С., Жуковский С.Е. О функциональных и дифференциальных неравенствах и их приложениях к задачам управления. Дифференциальные уравнения. 2020;56(11):1471–1482.
Бенараб С.Отеореме Чаплыгина для неявного дифференциального уравнения n-го порядка. Вестник российских университетов. Математика. 2021;26(135):225–233.
Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points principle for mappings in partially ordered spaces. Topology and its Applications. 2015;179(1):13–33.
Burlakov E.O., Serova I.D., Zhukovskiy E.S., Panasenko E.A. On Order Covering Set-Valued Mappings and Their Applications to the Investigation of Implicit Differential Inclusions and Dynamic Models of Economic Processes. Advances in Systems Science and Applications. 2022;22(1):176–191.
Серова И.Д. Суперпозиционная измеримость многозначной функции при обобщенных условиях Каратеодори. Вестник российских университетов. Математика. 2021;26(135):305–314.
Жуковский Е.С., Серова И.Д. О задаче управления для системы неявных дифференциальных уравнений. Дифференциальные уравнения. 2023;59(9): 1283–1296.
Просмотров аннотации: 23
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2024 Прикладная математика & Физика
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.