Параметрические характеристики нано- и микропор, влияющие на их залечивание при селективной лазерной обработке
DOI:
https://doi.org/10.52575/2687-0959-2024-56-3-226-233Ключевые слова:
нано- и микропоры, селективное лазерное воздействие, наносекундные лазерные импульсыАннотация
В работе теоретически рассмотрены закономерности прогрева материала в окрестности нано- и микроразмерных пор, расположенных вблизи поверхности металлического образца, подвергаемого лазерному нагреву лазерным импульсом длительностью 20 нс. Установлены зависимости нагрева материала над порой и под порой для различных расстояний от нагреваемой поверхности до поры. Показано, что в окрестности «идеальной поры» формируется специфическое распределение температуры с дополнительным нагревом материала над порой по сравнению с бездефектным материалом. Показано, что с точки зрения распределения теплового поля наиболее благоприятные условия для залечивания пор реализуются для пор малого диаметра, расположенных на расстоянии 0,5–2 мкм от поверхности, подвергаемой лазерному облучению. В условиях одновременного ударного сжатия это обеспечивает благоприятные условия для заполнения поры нагретым материалом и её полного или частичного залечивания.
Скачивания
Библиографические ссылки
Майоров В.С. Лазерное упрочнение металлов. В кн.: Лазерные технологии обработки материалов: современные проблемы фундаментальных исследований и прикладных разработок / под ред. В.Я. Панченко. М.: Физматлит; 2009. 664 c.
Костюк Г.И., Руденко Н.В. Лазерное упрочнение легированных сталей. Авиационно-космическая техника и технология. 2012;2(89):23–27.
Safronov I., Ushakov A. Effect of simultaneous improvement of plasticity and microhardness of an amorphousnanocrystalline material based on Co, as a result of laser processing of nanosecond duration. Elsevier Ltd.: Materials Today: Proceedings. 2020;38:1516–1520.DOI: 10.1016/j.matpr.2020.08.141
Duradji V.N., Kaputkin D.E., Duradji A. Aluminum Treatment in the Electrolytic Plasma during the Anodic Process. Journal of Engineering Science and Technology Review. 2017;10(3):81–84.DOI: 10.25103/jestr.103.11
Duradji V.N.; Kaputkin D.E. and Duradji A.Y. Electrolyte-Plasma Modification of Surface of Ti-Based Alloy during Electrohydrodynamic Mode of Anodic Process. Journal of The Electrochemical Society. 2017;164(9):226–232.doi:10.1149/2.0451709jes
Симонов Ю.В., Ушаков И.В. Механические свойства поверхностных структур титанового сплава ВТ9 после многократной локальной обработки наносекундными лазерными импульсами. Вестник Московского государственного областного университета. Серия: Физика-математика. 2020;2:19–35.
Ushakov I., Simonov Y. Formation of surface properties of vt18u titanium alloy by laser pulse treatment. Materials Today: Proceedings. 2021;19:2051.DOI:10.1016/j.matpr.2019.07.072
Dunn A., Carstensen J.V., Wlodarczyk K., Hansen E.B. Nanosecond laser texturing for high friction applications. Optics and Lasers in Engineering. 2014;62:9–16.DOI:10.1016/j.optlaseng.2014.05.003
Netprasert O., Saetang V., Dumkum Ch. Surface Hardening of AISI 420 Stainless Steel by Using a Nanosecond Pulse Laser. Materials Science Forum. 2018;911:44–48.DOI:10.4028/www.scientific.net/MSF.911.44
Casalino G., Moradi M., Moghadam M., Khorram A. Experimental and Numerical Study of AISI 4130 Steel Surface Hardening by Pulsed Nd:YAG Laser. Materials. 2019;12:31–36.DOI:10.3390/ma12193136
Andrukhova O.V., Ovechkin S.V., Andrukhova T.V., Zhukovskaya T.M., Kustov S.L., Nauman L.V. Study of the effect of coherent radiation on the properties of aramid fibers and fabrics. Fundamental’nye Problemy Sovremennogo Materialovedenia. 2022;19(1):125–131.
Овечкин С.В., Ананьин С.В., Андрухова О.В., Попов И.А. Влияние когерентного излучения на прочность арамидных волокон и тканей. Ползуновский вестник. 2021;2:233–238.
Чаус А.С., Максименко А.В., Федоенко Н.Н., Чаплович Л., Мышковец В.Н. Формирование структуры быстрорежущей стали при лазерном оплавлении поверхности. Физика металлов и металловедение. 2019;120(3):291–300.
Maharjan N., Wu N., Zhou W. Hardening Efficiency and Microstructural Changes during Laser Surface Hardening of 50CrMo4 Steel. Metals. 2021;11:2015.https://doi.org/10.3390/met11122015
Ushakov I.V., Safronov I.S., Oshorov A.D., Zhiqiang W., Muromtsev D.Yu. Physics of the effect of high-temperature pulse heating on defects in the surface layer of a metal alloy. Metallurgist. 2023;7:74–79.DOI:10.1007/s11015-023-01588-z
Wang Z., Ushakov I.V., Safronov I.S., Zuo, J. Physical Mechanism of Selective Healing of Nanopores in Condensed Matter under the Influence of Laser Irradiation and Plasma. Nanomaterials. 2024;14(2):139–153.https://doi.org/10.3390/nano14020139
Kaputkin D.E. Application of Focused Optic Irradiation for Surface Treatment of Commercial Steels. Materials Science Forum. 2003;426-432:1285–1288.DOI: 10.4028/www.scientific.net/MSF.426-432.1285
Liu B., Wang Ch. Numerical simulation for the evolution in surface morphology of titanium alloy by nanosecond pulsed laser ablation. Materials Chemistry and Physics. 2024;315:128997.DOI:10.1016/j.matchemphys.2024.128997
Yang X., Kuang X. Influence of Molten Pool Flowand Evaporation on the Surface Morphology During Laser Micro-Texture Processing. Metals and Materials International. 2024;30(6):1646–1658.DOI:10.1007/s12540-023-01588-3
Андрухова О.В., Сафронов И.С., Ушаков А.И. Физические процессы в поверхностном слое конденсированного материала при воздействии наносекундных лазерных импульсов. Материалы Международной научно-технической конференции «Материалы, оборудование и ресурсосберегающие технологии». 2024;104–106.
Qiao J., Ushakov I.V., Safronov I.S., Oshorov A.D., Wang Z., Andrukhova O.V., Rychkova O.V. Physical Mechanism of Nanocrystalline Composite Deformation Responsible for Fracture Plastic Nature at Cryogenic Temperatures. Nanomaterials. 2024;14(8):723.https://doi.org/10.3390/nano14080723
Kan Y., Liu H., Zhang S. H., Zhang L. W. and other authors Probabilistic pore healing model for prediction of relative density in heat treatment. Materials Research Innovations. 2014;18(S4):1026–1030.DOI:10.1179/1432891714Z.000000000819
Chen J., Chandrashekhara K., Mahimkar C., Simon Lekakh and other authors Study of void closure in hot radial forging process using 3D nonlinear finite element analysis. International Journal of Advanced Manufacturing Technology. 2012;62:1001–1011.DOI:10.1007/s00170-011-3876-3
Zhang X.-X., Cui Z., Chen W., Li Y. A criterion for void closure in large ingots during hot forging. Journal of Materials Processing Technology. 2009;209(4):1950–1959.DOI:10.1016/j.jmatprotec.2008.04.051
Бокштейн Б., Епишин А., Светлов И., Есин В., Родин А., Линк Т. Рост и залечивание пор в монокристаллах жаропрочных сплавов на никелевой основе. Журнал функциональных материалов. 2006;1(5).
Просмотров аннотации: 85
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2024 Прикладная математика & Физика
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.