Затенение в окрестности гиперболической стационарной точки для дробных уравнений
DOI:
https://doi.org/10.52575/2687-0959-2025-57-1-41-51Ключевые слова:
дробные уравнения, полулинейные задачи Коши в банаховом пространстве, гиперболическая стационарная точка, компактная сходимость резольвент, общая аппроксимационная схема, затенениеАннотация
В работе изучается поведение траекторий абстрактных параболических задач с дробной по времени производной в окрестности гиперболической стационарной точки, где дробная производная понимается по Капуто – Джрбашяну. Хорошо известно, что для динамических систем с целой производной фазовое пространство в окрестности гиперболической стационарной точки расщепляется таким образом, что данная начальная задача сводится к начальным задачам с экспоненциально убывающими решениями в противоположных направлениях. В случае с дробной производной ситуация драматически меняется. Во-первых, отсутствует экспоненциальное убывание. Во-вторых, спектр линеаризированного оператора допускает разложение, отличное от классической картины. Тем не менее удается доказать аналоги результатов по затенению. Основные условия наших результатов выполняются, в частности, для операторов с компактной резольвентой и могут быть проверены для метода конечных элементов и разностных методов.
Благодарности
Работа выполнена в НИВЦ МГУ имени М. В. Ломоносова в рамках исследований по теме «Исследование и разработка методов, алгоритмов и программного обеспечения в области вычислительной математики» ЦИТИС: АААА-А21-121011990147-4 и при поддержке РНФ (грант № 23-21-00005).
Скачивания
Библиографические ссылки
Список литературы
Ashyralyev A. and Sobolevskii P.E. Well-Posedness of Parabolic Difference Equations, Operator Theory Advances and Applications, Birkh¨auser Verlag, Basel, Boston, Berlin, vol.69, 1994.
Henry D. Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
Крейн С.Г. Линейные дифференциальные уравнения в банаховом пространстве. М.: Наука. 1967. 464 с.
Пискарев С.И. Дифференциальные уравнения в банаховом пространстве и их аппроксимация. М.: издательство МГУ имени М. В. Ломоносова. 2005. 287 c.
Kaashoek M.A., Verduyn Lunel S.M. An integrability condition on the resolvent for hyperbolicity of the semigroup. Differential Equations. 1994;112(2):374–406.
Vu Quoc Phong. A new proof and generalizations of Gearhart’s theorem. Proceedings of the American Mathematical Society. 2007;135(no.7):2065–2072.
Vu Quoc Phong. The spectral radius, hyperbolic operators and Lyapunov’s theorem. Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), 187–194, Lecture Notes in Pure and Appl. Math., 215, Dekker, New York, 2001.
Beyn W.-J., Piskarev S. Shadowing for discrete approximations of abstract parabolic equations. Discrete and Continuous Dynamical Systems Series B. 2008;10(1):19–42 .
Beyn W.-J. Numerical methods for dynamical systems. Advances in numerical analysis, Vol. I (Lancaster, 1990), 175–236, Oxford Sci. Publ., Oxford Univ. Press, New York, 1991.
Larsson S. Numerical analysis of semilinear parabolic problems. (English) Ainsworth, Mark (ed.) et al., The graduate student’s guide to numerical analysis ’98. Lecture notes from the 8th EPSRC summer school in numerical analysis. Leicester, GB, July 5-17, 1998. Berlin: Springer. Springer Ser. Comput. Math. 26, 83-117 (1999).
Larsson S., Sanz-Serna J.-M. The behavior of finite element solutions of semilinear parabolic problems near stationary points. SIAM Journal on Numerical Analysis. 1994;31(4):1000–1018.
Larsson S., Sanz-Serna J.-M. A shadowing result with applications to finite element approximation of reaction-diffusion equations. Applied Mathematics and Computation. 1999;68(225): 55–72.
Pilyugin S.Yu. Shadowing in Dynamical Systems. Springer-Verlag, Berlin, 1999.
Vainikko G. Approximative methods for nonlinear equations (two approaches to the convergence problem). Nonlinear Analysis. 1978;2:647–687.
Piskarev S., Ovchinnikov A. Attractors, shadowing and approximation of abstract semilinear differential equations. World Scientific, 2023. 204 pp. ISBN: 978-981-124-892-4
Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag – Leffler functions, related topics and applications. Springer Monographs in Mathematics. Berlin: Springer (2020).
Kokurin M.M. The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space. Russian Mathematics. 2013;57:16–30.
Popov A.Yu., Sedletskiy A.M. Distribution of the roots of the Mittag – Leffler functions. Sovremennaja mathematica. Fundamental’nye Napravlenija. 2011;V.40:3–171.
Антонюк А.В., Кочубей А.Н., Пискарев С.И. О компактности и равномерной непрерывности разрешающего семейства для уравнения с дробными производными (English summary). Доповiдi Нацiональної академiї наук України, 2014, №6. Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2014; 6:7–12.
Fan Z. Characterization of compactness for resolvents and its applications. Applied Mathematics and Computation. 2014;232:60–67.
Liu R., Li M., Piskarev S.I. Approximation of semilinear fractional Cauchy problem. Applied Mathematics and Computation. 2015;15:203–212.
Siegmund S., Piskarev S. Approximations of stable manifolds in the vicinity of hyperbolic equilibrium points for fractional differential equations. Nonlinear Dynamics (NODY) 2019;95(1):685–697.
Piskarev S., Siegmund S. Unstable manifolds for fractional differential equations. Eurasian Journal of Mathematical and Computer Applications. 2022;10(3):58–72.
Красносельский М.А., Забрейко П.П. Геометрические методы нелинейного анализа. М.: Наука. 1975. 510 с.
Tuan Hoang The, Siegmund Stefan, Son Doan Thai, Cong Nguyen. An instability theorem for nonlinear fractional differential systems. Discrete and Continuous Dynamical Systems Series B. 2017;22(8):3079–3090.
References
Ashyralyev A. and Sobolevskii PE. Well-Posedness of Parabolic Difference Equations, Operator Theory Advances and Applications, Birkh¨auser Verlag, Basel, Boston, Berlin, vol.69, 1994.
Henry D. Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
Krein SG. Linear differential equations in Banach space. American Mathematical Society, Providence, R.I., 1971. Translated from the Russian by J. M. Danskin, Translations of Mathematical Monographs, Vol. 29.
Piskarev S. Differential equations in Banach space and thier approximation. M.: Lomonosov Moscow States University press. 2005. 287 p. (In Russ.)
Kaashoek MA, Verduyn Lunel SM. An integrability condition on the resolvent for hyperbolicity of the semigroup. Differential Equations. 1994;112(2):374–406.
Vu Quoc Phong. A new proof and generalizations of Gearhart’s theorem. Proceedings of the American Mathematical Society. 2007; 135(7):2065–2072.
Vu Quoc Phong. The spectral radius, hyperbolic operators and Lyapunov’s theorem. Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), 187–194, Lecture Notes in Pure and Appl. Math., 215, Dekker, New York, 2001.
Beyn W.-J., Piskarev S. Shadowing for discrete approximations of abstract parabolic equations. Discrete and Continuous Dynamical Systems Series B. 2008;10(1):19–42.
Beyn W.-J. Numerical methods for dynamical systems. Advances in numerical analysis, Vol. I (Lancaster, 1990), 175–236, Oxford Sci. Publ., Oxford Univ. Press, New York, 1991.
Larsson S. Numerical analysis of semilinear parabolic problems. (English) Ainsworth, Mark (ed.) et al., The graduate student’s guide to numerical analysis ’98. Lecture notes from the 8th EPSRC summer school in numerical analysis. Leicester, GB, July 5-17, 1998. Berlin: Springer. Springer Ser. Comput. Math. 26, 83–117 (1999).
Larsson S., Sanz-Serna J.-M. The behavior of finite element solutions of semilinear parabolic problems near stationary points. SIAM Journal on Numerical Analysis. 1994;31(4):1000–1018.
Larsson S, Sanz-Serna J.-M. A shadowing result with applications to finite element approximation of reaction-diffusion equations. Applied Mathematics and Computation. 1999;68(225): 55–72.
Pilyugin SYu. Shadowing in Dynamical Systems. Springer-Verlag, Berlin, 1999.
Vainikko G. Approximative methods for nonlinear equations (two approaches to the convergence problem) Nonlinear Anal. 1978. 2: 647–687.
Piskarev S., Ovchinnikov A. Attractors, shadowing and approximation of abstract semilinear differential equations. World Scientific, 2023. 204 pp.
Gorenflo R., Kilbas AA., Mainardi F., Rogosin SV. Mittag – Leffler functions, related topics and applications. Springer Monographs in Mathematics. Berlin: Springer (2020).
Kokurin MM. The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space. Russian Mathematics. 2013;57:16–30.
Popov AYu, Sedletskiy AM. Distribution of the roots of the Mittag – Leffler functions Sovremennaja mathematica. Fundamental’nye Napravlenija. 2011;40:3–171.
Antoniouk AV., Kochubei AN., Piskarev SI. On the compactness and the uniform continuity of a resolvent family for a fractional differential equation. Reports of National Academy of Sciences of Ukraine. (English summary). Доповiдi Нацiональної академiї наук України, 2014, №6. Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2014;6:7–12.
Fan Z. Characterization of compactness for resolvents and its applications. Applied Mathematics and Computation. 2014;232:60–67.
Liu R., Li M., Piskarev SI.: Approximation of semilinear fractional Cauchy problem. Applied Mathematics and Computation. 2015;15:203–212.
Siegmund S, Piskarev S. Approximations of stable manifolds in the vicinity of hyperbolic equilibrium points for fractional differential equations. Nonlinear Dynamics (NODY), 2019;95(1):685–697.
Piskarev S, Siegmund S. Unstable manifolds for fractional differential equations. Eurasian Journal of Mathematical and Computer Applications. 2022;10(3):58 – 72.
Krasnosel’ski˘ı MA, Zabre˘ıko PP. Geometrical methods of nonlinear analysis. Transl. from the Russian by Christian C. Fenske. Grundlehren der Mathematischen Wissenschaften, 263, Springer, 1984.
Tuan Hoang The, Siegmund Stefan, Son Doan Thai, Cong Nguyen. An instability theorem for nonlinear fractional differential systems. Discrete and Continuous Dynamical Systems Series B. 2017;22(8):3079–3090.
Просмотров аннотации: 20
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2025 Прикладная математика & Физика

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.