ТРАНСПОРТНЫЕ СВОЙСТВА ТОНКИХ ПЛЕНОК Cd3As2 И ЕГО ТВЕРДЫХ РАСТВОРОВ
DOI:
https://doi.org/10.52575/2687-0959-2021-53-3-243–251Ключевые слова:
дираковский полуметалл, арсенид кадмия, арсенид цинка, тонкие пленки, подвижность электроновАннотация
Исследованы транспортные свойства аморфных пленок Cd3As2 и его твёрдых растворов (Cd1-x-yZnxMny)3As2 (x + y = 0.1; y = 0, 0.02), полученных магнетронным распылением, в диапазоне температур 10-300 К. Легирование Zn приводит к смене типа проводимости: от полупроводниковой к металлической. Сопротивление тонких пленок (Cd0.9Zn0.1)3As2 и (Cd0.9Zn0.08Mn0.02)3As2 уменьшается с понижением температуры. Такое поведение связано с уменьшением подвижности электронов вследствие рассеяния на ионизированных примесях при нагревании.
Скачивания
Библиографические ссылки
Жалилов Н.С., Саныгин В.П., Квердаков А.М. 1990. Получение и свойства тонких пленок Cd3As2 и Zn3P2. Изв. АН СССР. Неорган. материалы, 26(9): 1975–1976.
Шалимова К. В. 2010. Физика полупроводников. СПб. Издательство "Лань". 400 с.
Amarnath R., Bhargavi K. S., Kubakaddi S. S. 2020. Thermoelectric transport properties in 3D Dirac semimetal Cd3As2. Journal of Physics Condensed Matter, 32(22): 22570412.
Armitage N.P., Mele E.J., Vishwanath A. 2018. Weyl and Dirac Semimetals in Three-Dimensional Solids. Rev. Mod. Phys., 90: 015001.
Arushanov E. K. 1992. II3V2 compounds and alloys. Progress in crystal growth and characterization of materials, 25(3): 131-201.
Borisenko S., Gibson Q., Evtushinsky D. et al. 2014. Experimental Realization of a Three-Dimensional Dirac Semimetal. Phys. Rev. Lett., 113(2): 027603.
Burgess, T. et al. 2015. Zn3As2 nanowires and nanoplatelets: highly efficient infrared emission and photodetection by an earth abundant material. Nano Lett., 15: 378–385.
Chorsi H. T. et al. 2020. Widely Tunable Optical and Thermal Properties of Dirac Semimetal Cd3As2. Advanced Optical Materials, 8(8): 120302 6.
Crassee I. et al. 2018. 3D Dirac semimetal Cd3As2: A review of material properties. Physical Review Materials, 2(12): 120302 15.
Din M., Gould R.D. 2006. Van der Pauw Resistivity Measurements on Evaporated Thin Films Of Cadmium Arsenide, Cd3As2. Appl. Surf. Sci., 252(15): 5508–5501.
Dubowski J.J., Norman P., Sewell P.B., et al. 1987. Cadmium Arsenide Films Prepared by Pulsed Laser Evaporation: Electrical Properties and lattice parameters. Thin Solid Films, 147(1): 51-54.
Dubowski J.J., Williams D.F. 1984. Pulsed Laser Evaporation of Cd3As2. Appl. Phys. Lett., 44(3): 339.
Feng J., Pang Y., Wu D. et al. 2015. Large Linear Magnetoresistance in Dirac Semimetal Cd3As2 with Fermi Surfaces Close to the Dirac Points. Phys. Rev. B., 92. 081306.
He L.P., Hong X.C., Dong J.K. et al. 2014. Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2. Phys. Rev. Lett., 113: 246402.
Jarzabek B., Weszka J., Cisowski J. 2004. Distribution of Electronic States in Amorphous Cd3As2 Thin Films on the Basis of Optical Measurements. J. Non-Cryst. Solids. V., 333(2): 206–211.
Li C. Z. et al. 2015. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nature communications, 6(1): 1–7.
Liang T. et al. 2015. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nature materials, 14(3) : 280–284.
Liang T. et al. 2017. Anomalous Nernst effect in the dirac semimetal Cd3As2. Physical review letters, 118(13): 136601 5.
Lu H. et al. Topological phase transition in single crystals of (Cd1-x-yZnxMny)3As2. 2017. Scientific reports. 7. (1): 1-10.
Marius G. 2016. The Physics of Semiconductors: An Introduction Including Nanophysics and Applications.
Nishihaya S., Uchida M., Nakazawa Y. et al. 2018. Negative Magnetoresistance Suppressed through a Topological Phase Transition in (Cd1-x-yZnxMny)3As2 Thin Films. Phys. Rev. B., 97.(24): 245103.
Ivanov O.N., Yaprintsev M.N. et al. 2016. Low-temperature Minimum in the Electrical Resistivity of the Bi1:9 Lu0:1Te3. J. NANO- ELECTRON. PHYS., 8, 4(1): 04036.
Pawlikowski J.M., Sieranski K., Szatkowski J. 1975. A New Method of Obtaining Crystalline Cd3As2 Films on Non-Crystalline Substrates. Thin Solid Films., 30(1): 99-102.
Stackelberg M. V., Paulu R. 1935. Untersuchungen an den Phosphiden und Arseniden des Zinks und Cadmiums. Das Zn3P2 -Gitter, Zeitschrift far Physikalische Chemie, 28B(1): 427-460.
Turner W. J., Fischler, A. S. Reese, W. E. 1961. Physical properties of several 2–5 semiconductors. Phys. Rev., 121: 759–767.
Uchida M. et al. 2017. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nature communications, 8(1): 1-7.
Wagner, R. J., Palik, E. D. Swiggard, E. M. 1971. Interband magnetoabsorption in CdxZn3xAs2 and Cd3AsxP2x. J. Phys. Chem. Solids, Suppl., 1: 471.
Wang Q. et al. 2017. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2. Nano letters., 17(2): 834-841
Wang Z., Weng H.,Wu Q. et al. 2013. Three-Dimensional Dirac Semimetal and Quantum Transport in Cd3As2. Phys. Rev., 88: 125427.
Weglowski, S. Lukaszewicz, K. 1968. Phase transition of Cd3As2 and Zn3As2. Bull. Acad. Polon. Sci. Ser. Sci. Chim., 16: 177–182.
Weszka J. 1999. Model of lattice dynamics of Cd3As2 single crystals. Physica Status Solidi (b)., 211(2): 605-619.
Weszka J., Renucci M., Zwick A. 1986. Some aspects of raman scattering in Cd3As2 single crystals. Physica Status Solidi (b)., 133(1): 57-64.
Zakhvalinskii V. S. et al. 2020. Hopping Conductivity Mechanism in Cd3As2 Films Prepared by Magnetron Sputtering. Journal of Nano- and Electronic Physics, 12(3):03029-1-03029.
Zhang K., Pan H., Zhang M. et al. 2017. Controllable synthesis and magnetotransport properties of Cd3As2 Dirac semimetal nanostructures. RSC Adv., 7 : 17689–17696
Zhou T. et al. 2016. Enhanced thermoelectric properties of the Dirac semimetal Cd3As2. Inorganic Chemistry Frontiers, 3(12) : 1637–1643.
Просмотров аннотации: 355
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2021 Прикладная математика & Физика
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.