OBTAINING AND PROPERTIES OF ZnSxSe1-x NANOCRYSTALS SYNTHETIZED BY COMBUSTION SYNTHESIS

Authors

DOI:

https://doi.org/10.52575/2687-0959-2022-54-1-52-59

Abstract

We obtained nanocrystals of ZnSxSe1-x solid solutions by the combustion synthesis. The obtained charge is a combination of nanocrystals and polycrystals. The high reaction temperature and the impossibility of instantaneous heat removal form polycrystals. There is a nonlinear dependence of the incorporated charge before synthesis and the powder obtained after synthesis. The sizes of ZnSxSe1-x nanocrystals are calculated by the Debye-Scherrer method. The maximum dimensions were 80 ± 5 nm for zinc sulfide and selenide and 60 ± 5 nm for all other compositions. The obtained degrees of microstress and dislocation density in ZnSxSe1-x nanocrystals are typical for homogeneous compositions with a high perfection of the crystal structure. Nanocrystals for all parameters x are characterized by the presence of a hexagonal and cubic phase. The fraction of the cubic phase increases with a decrease in the parameter x in nanocrystals of ZnSxSe1-x solid solutions. The local environment of Mn2+ impurity ions depends on the composition of the solid solution. Sulfur ions with a hyperfine structure constant А = 6.88 ÷ 6.91 mT surround Mn2+ ions in ZnSxSe1-x of composition 0.4≤ x ≤ 1, and selenium ions with a hyperfine structure constant A = 6.55 mT surround Mn2+ ions in compositions with x ≤ 0.2. There is a single line of electron paramagnetic resonance (EPR) of Cr+ ions with a factor g = 1.9998 in unilluminated ZnSxSe1-x nanocrystals with compositions 0.8 ≤ x ≤ 1.

Downloads

Download data is not yet available.

Author Biographies

Evgenii G. Plakhtii, Belgorod National Research University

соискатель кафедры теоретической и экспериментальной физики института инженерных и цифровых технологий Белгородского государственного национального исследовательского университета
г. Белгород, Россия

Vasily S. Zakhvalinsky, Belgorod National Research University

PhD, Professor, Professor of the Department of Theoreticaland Experimental Physics of the Institute of Engineering and Digital Technologies, Belgorod State National Research University,
Belgorod, Russia

References

Ahmed N., Darwish S., Alahmari A.M. 2016. Laser ablation and laser-hybrid ablation processes: a review. Materials and Manufacturing Processes, 31(9): 1121-1142.

Ardekani S.R., Aghdam A. S. R., Nazari M., Bayat A., Yazdani E., Saievar-Iranizad E. 2019. A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter. Journal of Analytical and Applied Pyrolysis, 141: 104631.

Aviles M. A., Gotor F. J. 2021. Tuning the excitation wavelength of luminescent Mn2+-doped ZnSxSe1-x obtained by mechanically induced self-sustaining reaction. Optical Materials, 117: 111121.

Bacherikov Yu. Yu., Baran N. P., Vorona I. P., Gilchuk A. V., Zhuk A. G., Polishchuk Y. O., Korsunska N. E. 2017. Structural and optical properties of ZnS: Mn micro-powders, synthesized from the charge with a different Zn/S ratio. Journal of Materials Science: Materials in Electronics, 28 (12): 8569-8578.

Brahim T., Bouazra A., Said M. 2021. Temperature, hydrostatic pression and composition x effects on intersubband energy levels in ZnSe / ZnSxSe1-x core–shell quantum dot. Optik, 225: 165860.

Bulaniy M. F., Kovalenko A. V., Morozov A. S., Khmelenko O. V. 2017. Obtaining of nanocrystals ZnS: Mn by means of self-propagating high-temperature synthesis. Journal of Nano-and Electronic Physics, 9 (2): 2007-1.

ChenD.,Wang A., Buntine M. A., Jia G. 2019. RecentAdvances in Zinc - Containing Colloidal Semiconductor Nanocrystals for Optoelectronic and Energy Conversion Applications. Chem Electro Chem, 6(3): 4709-4724.

Chiu H.-C., Yeh C.-S. 2007. Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. The Journal of Physical Chemistry C, 111 (20): 7256-7259.

Chukavin A. I., Valeev R. G., Beltiukov A. N. 2019. Observation of excitons at room temperature in ZnSxSe1-x nanostructures embedded in a porous Al2O3 template. Materials Chemistry and Physics, 235: 121748

Fang X., Zhai T., Gautam U.K., Li L.,Wu L., Bando Y., Golberg D. 2011. ZnS nanostructures: from synthesis to applications. Progress in Materials Science, 56(2): 175-287.

Ivashchenko M. M., Buryk, I. P., Opanasyuk, A. S., Nam, D., Cheong, H., Vaziev, J. G., Bibyk, V. V. 2015. Influence of deposition conditions on morphological, structural, optical and electro-physical properties of ZnSe films obtained by close-spaced vacuum sublimation. Materials Science in Semiconductor Processing, 36(13-19).

Kovalenko А. V., Plakhtii Y. G., Khmelenko О. V. 2018. The peculiarities of the properties of ZnSxSe1-x nanocrystals obtained by self-propagating high-temperature synthesis. Functional materials, 4: 665 - 669.

Kovalenko A. V., Plakhtii Y. G., KhmelenkoO. V. 2019. Research of photoluminescence spectra of ZnSxSe1-x: Mn nanocrystals obtained by method of self-propagation high-temperature synthesis. Journal of nano-and electronic physics, 11(4): 04031-1-04031-5.

Kozitskii S. V., Pisarskii V. P., Ulanova O. O. 1998. Structure and phase composition of zinc sulfide produced by self-propagating high-temperature synthesis. Combustion, Explosion and Shock Waves, 34(1): 34-39.

Levashov E. A. Mukasyan A. S., Rogachev A. S., Shtansky D. V. 2017. Self-propagating high-temperature synthesis of advanced materials and coatings. International Materials Reviews, 62(4): 203-239.

Lee G. J., Wu J. J. 2017. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications – A review. Powder technology, 318: 8-22.

Liu G., Chen K., Li J. 2018. Combustion synthesis: An effective tool for preparing inorganic materials. Scripta Materialia, 157: 167-173.

Liu G., Yuan X., Li J., Chen K., Li Y., Li L. 2016. Combustion synthesis of ZnSe with strong red emission. Materials & Design, 97: 33-44.

Lu J., Liu H., Sun C., Zheng M., Nripan M., Chen G. S., Subodh G. M., Zhang X., Sow C.H. 2012. Optical and electrical applications of ZnSxSe1-x nanowires-network with uniform and controllable stoichiometry. Nanoscale, 4(3): 976-981.

Markov A. A., Filimonov I. A., Poletaev A. V., Vadchenko S. G., Martirosyan K. S. 2013. Generation of charge carriers during combustion synthesis of sulfides. International Journal of Self-Propagating High Temperature Synthesis, 22(2) : 69-76.

Rakshit T., Mandal S., Mishra P., Dhar A., Manna I., Ray S. K. 2012.Optical and bio-sensing characteristics of ZnO nanotubes grown by hydrothermal method. Journal of nanoscience and nanotechnology, 12: 308–315.

Rogachev A. S., Mukasyan A. S. 2015. Combustion for material synthesis: CRC Press Taylor & Francis Group : 398.

Sadekar H. K., Ghule A.V., Sharma R. 2011. Bandgap engineering by substitution of S by Se in nanostructured ZnSxSe1-x thin films grown by soft chemical route for nontoxic optoelectronic device applications. Journal of Alloys and Compounds, 509(18): 5525-5531.

Sirringhaus H., Tessler N., Friend R.H. 1998. Integrated optoelectronic devices based on conjugated polymers. Science, 280(5370): 1741–1744.

Sytschev A. E., Merzhanov A. G. 2004. Self-propagating high-temperature synthesis of nanomaterials. Russian chemical reviews, 73(2) : 147-159.

Taguchi T., Kawakami Y., Yamada Y. 1993. Interface properties and the effect of strain of ZnSe/ZnS strainedlayer superlattices. Physica B: Condensed Matter, 191(1-2): 23-44.

Tian Z., Chen Z., Yuan X., Cui W., Zhang J., Sun S., Liu G. 2019. Preparation of ZnSe powder by vapor reaction during combustion synthesis. Ceramics International, 45 (14): 18135-18139.

Varkey A. J., Fort A. F.. 1993. Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition. Solar Energy Materials and Solar Cells, 29(3): 253-259.


Abstract views: 166

##submission.share##

Published

2022-03-30

How to Cite

Plakhtii, E. G., & Zakhvalinsky, V. S. (2022). OBTAINING AND PROPERTIES OF ZnSxSe1-x NANOCRYSTALS SYNTHETIZED BY COMBUSTION SYNTHESIS. Applied Mathematics & Physics, 54(1), 52-59. https://doi.org/10.52575/2687-0959-2022-54-1-52-59

Issue

Section

Physics. Mathematical modeling