OBTAINING AND PROPERTIES OF ZnSxSe1-x NANOCRYSTALS SYNTHETIZED BY COMBUSTION SYNTHESIS
DOI:
https://doi.org/10.52575/2687-0959-2022-54-1-52-59Abstract
We obtained nanocrystals of ZnSxSe1-x solid solutions by the combustion synthesis. The obtained charge is a combination of nanocrystals and polycrystals. The high reaction temperature and the impossibility of instantaneous heat removal form polycrystals. There is a nonlinear dependence of the incorporated charge before synthesis and the powder obtained after synthesis. The sizes of ZnSxSe1-x nanocrystals are calculated by the Debye-Scherrer method. The maximum dimensions were 80 ± 5 nm for zinc sulfide and selenide and 60 ± 5 nm for all other compositions. The obtained degrees of microstress and dislocation density in ZnSxSe1-x nanocrystals are typical for homogeneous compositions with a high perfection of the crystal structure. Nanocrystals for all parameters x are characterized by the presence of a hexagonal and cubic phase. The fraction of the cubic phase increases with a decrease in the parameter x in nanocrystals of ZnSxSe1-x solid solutions. The local environment of Mn2+ impurity ions depends on the composition of the solid solution. Sulfur ions with a hyperfine structure constant А = 6.88 ÷ 6.91 mT surround Mn2+ ions in ZnSxSe1-x of composition 0.4≤ x ≤ 1, and selenium ions with a hyperfine structure constant A = 6.55 mT surround Mn2+ ions in compositions with x ≤ 0.2. There is a single line of electron paramagnetic resonance (EPR) of Cr+ ions with a factor g = 1.9998 in unilluminated ZnSxSe1-x nanocrystals with compositions 0.8 ≤ x ≤ 1.
Downloads
References
Ahmed N., Darwish S., Alahmari A.M. 2016. Laser ablation and laser-hybrid ablation processes: a review. Materials and Manufacturing Processes, 31(9): 1121-1142.
Ardekani S.R., Aghdam A. S. R., Nazari M., Bayat A., Yazdani E., Saievar-Iranizad E. 2019. A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter. Journal of Analytical and Applied Pyrolysis, 141: 104631.
Aviles M. A., Gotor F. J. 2021. Tuning the excitation wavelength of luminescent Mn2+-doped ZnSxSe1-x obtained by mechanically induced self-sustaining reaction. Optical Materials, 117: 111121.
Bacherikov Yu. Yu., Baran N. P., Vorona I. P., Gilchuk A. V., Zhuk A. G., Polishchuk Y. O., Korsunska N. E. 2017. Structural and optical properties of ZnS: Mn micro-powders, synthesized from the charge with a different Zn/S ratio. Journal of Materials Science: Materials in Electronics, 28 (12): 8569-8578.
Brahim T., Bouazra A., Said M. 2021. Temperature, hydrostatic pression and composition x effects on intersubband energy levels in ZnSe / ZnSxSe1-x core–shell quantum dot. Optik, 225: 165860.
Bulaniy M. F., Kovalenko A. V., Morozov A. S., Khmelenko O. V. 2017. Obtaining of nanocrystals ZnS: Mn by means of self-propagating high-temperature synthesis. Journal of Nano-and Electronic Physics, 9 (2): 2007-1.
ChenD.,Wang A., Buntine M. A., Jia G. 2019. RecentAdvances in Zinc - Containing Colloidal Semiconductor Nanocrystals for Optoelectronic and Energy Conversion Applications. Chem Electro Chem, 6(3): 4709-4724.
Chiu H.-C., Yeh C.-S. 2007. Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. The Journal of Physical Chemistry C, 111 (20): 7256-7259.
Chukavin A. I., Valeev R. G., Beltiukov A. N. 2019. Observation of excitons at room temperature in ZnSxSe1-x nanostructures embedded in a porous Al2O3 template. Materials Chemistry and Physics, 235: 121748
Fang X., Zhai T., Gautam U.K., Li L.,Wu L., Bando Y., Golberg D. 2011. ZnS nanostructures: from synthesis to applications. Progress in Materials Science, 56(2): 175-287.
Ivashchenko M. M., Buryk, I. P., Opanasyuk, A. S., Nam, D., Cheong, H., Vaziev, J. G., Bibyk, V. V. 2015. Influence of deposition conditions on morphological, structural, optical and electro-physical properties of ZnSe films obtained by close-spaced vacuum sublimation. Materials Science in Semiconductor Processing, 36(13-19).
Kovalenko А. V., Plakhtii Y. G., Khmelenko О. V. 2018. The peculiarities of the properties of ZnSxSe1-x nanocrystals obtained by self-propagating high-temperature synthesis. Functional materials, 4: 665 - 669.
Kovalenko A. V., Plakhtii Y. G., KhmelenkoO. V. 2019. Research of photoluminescence spectra of ZnSxSe1-x: Mn nanocrystals obtained by method of self-propagation high-temperature synthesis. Journal of nano-and electronic physics, 11(4): 04031-1-04031-5.
Kozitskii S. V., Pisarskii V. P., Ulanova O. O. 1998. Structure and phase composition of zinc sulfide produced by self-propagating high-temperature synthesis. Combustion, Explosion and Shock Waves, 34(1): 34-39.
Levashov E. A. Mukasyan A. S., Rogachev A. S., Shtansky D. V. 2017. Self-propagating high-temperature synthesis of advanced materials and coatings. International Materials Reviews, 62(4): 203-239.
Lee G. J., Wu J. J. 2017. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications – A review. Powder technology, 318: 8-22.
Liu G., Chen K., Li J. 2018. Combustion synthesis: An effective tool for preparing inorganic materials. Scripta Materialia, 157: 167-173.
Liu G., Yuan X., Li J., Chen K., Li Y., Li L. 2016. Combustion synthesis of ZnSe with strong red emission. Materials & Design, 97: 33-44.
Lu J., Liu H., Sun C., Zheng M., Nripan M., Chen G. S., Subodh G. M., Zhang X., Sow C.H. 2012. Optical and electrical applications of ZnSxSe1-x nanowires-network with uniform and controllable stoichiometry. Nanoscale, 4(3): 976-981.
Markov A. A., Filimonov I. A., Poletaev A. V., Vadchenko S. G., Martirosyan K. S. 2013. Generation of charge carriers during combustion synthesis of sulfides. International Journal of Self-Propagating High Temperature Synthesis, 22(2) : 69-76.
Rakshit T., Mandal S., Mishra P., Dhar A., Manna I., Ray S. K. 2012.Optical and bio-sensing characteristics of ZnO nanotubes grown by hydrothermal method. Journal of nanoscience and nanotechnology, 12: 308–315.
Rogachev A. S., Mukasyan A. S. 2015. Combustion for material synthesis: CRC Press Taylor & Francis Group : 398.
Sadekar H. K., Ghule A.V., Sharma R. 2011. Bandgap engineering by substitution of S by Se in nanostructured ZnSxSe1-x thin films grown by soft chemical route for nontoxic optoelectronic device applications. Journal of Alloys and Compounds, 509(18): 5525-5531.
Sirringhaus H., Tessler N., Friend R.H. 1998. Integrated optoelectronic devices based on conjugated polymers. Science, 280(5370): 1741–1744.
Sytschev A. E., Merzhanov A. G. 2004. Self-propagating high-temperature synthesis of nanomaterials. Russian chemical reviews, 73(2) : 147-159.
Taguchi T., Kawakami Y., Yamada Y. 1993. Interface properties and the effect of strain of ZnSe/ZnS strainedlayer superlattices. Physica B: Condensed Matter, 191(1-2): 23-44.
Tian Z., Chen Z., Yuan X., Cui W., Zhang J., Sun S., Liu G. 2019. Preparation of ZnSe powder by vapor reaction during combustion synthesis. Ceramics International, 45 (14): 18135-18139.
Varkey A. J., Fort A. F.. 1993. Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition. Solar Energy Materials and Solar Cells, 29(3): 253-259.
Abstract views: 166
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2022 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.