Alternating Magnetoresistance and Temperature Dependence of Electrical Conductivity of Single Crystals of Solid Solutions of Cadmium Arsenide
DOI:
https://doi.org/10.52575/2687-0959-2022-54-3-178-185Keywords:
negative magnetoresistance, solid solution, single crystal, hopping conductivity, cadmium arsenideAbstract
A single crystal of solid solution was grown by the modified Bridgman method (Cd0.5Zn0.5)3As2. The Hall mobility and the concentration of charge carriers were measured. The dependence of electrical conductivity and magnetoresistance was investigated in the range from 10 to 300 K. It was found that in the system (Cd0.5Zn0.5)3As2 demonstrating to the Mott variable-range hopping conductivity mechanism. Negative magnetoresistance is manifested in a wide temperature range in an orthogonal magnetic field of 1 Tl. The radius of localization of charge carriers a = 262 ˚A, the Coulomb gap Δ = 0.259 meV are determined.
Downloads
References
Amarnath R., Bhargavi K. S., Kubakaddi S. S. 2020. Thermoelectric transport properties in 3D Dirac semimetal Cd3As2. Journal of Physics Condensed Matter, 32(22): 225704 12.
Bodnar J. 1977. In Proceedings of the International Conference on the Physics of Narrow-Gap Semiconductors. Proc. Internat. Conf., 311.
Chorsi H. T. et al. 2020. Widely Tunable Optical and Thermal Properties of Dirac Semimetal Cd3As2. Advanced Optical Materials, 8(8): 120302 6.
Crassee I. et al. 2018. 3D Dirac semimetal Cd3As2: A review of material properties. Physical Review Materials, 2(12): 120302 15.
Huang X., Zhao L., Long Y., Wang P., Chen D., Yang Z., et al. 2015. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Phys. Rev. X, 5: 031023.
Grundmann M. 2021. The Physics of Semiconductors. Graduate Texts in Physics. Springer Berlin Heidelberg, 989: 255–265.
Lu H. et al. 2017. Topological phase transition in single crystals of (Cd1-x-y Znx Mny)3As2 // Scientific reports. 7. (1): 3148.
Laiho R., Lashkul A., Lisunov K., Lahderanta E., Shakhov M. and ZakhvalinskiiV. 2008. Hopping conductivity of ni-doped p-CdSb. Journal of Physics: Condensed Matter, 20(29): 295204-295214.
Volodina G.F. et al. 2013. Crystal Structure of a′′′ – (Zn1−x Cdx)3As2 (x = 0.26). Crystallography Reports, 58(58): 563-567.
Wang Z., Weng H., Wu Q. et al. 2013. Three-Dimensional Dirac Semimetal and Quantum Transport in Cd3As2 // Phys. Rev., 88: 125427.
Xue J., Huang S.,Wang J. Y. and Xu H. Q. 2019. Mott variable-range hopping transport in a MoS2 nanoflake. RSC. Adv, 9: 17885.
Zakhvalinskii V. S., Alam M., Nikulicheva T. B., Lahderanta E., Shakhov M. A., Piljuk E. A., Ivanchikhin S. V., Kochura A. V. 2017. Hopping Conductivity in Single Crystals (Cd0.6 Zn0.32 Mn0.08)3As2.International Journal of Engineering. B, 30 : 11.
Zakhvalinskii V. S., Nikulicheva T. B., Kochura A. V., Lahderanta E., Shakhov M., Kubankin A. S., Sukhov M., Yaprintsev M. N., and Morocho A. A. 2021. Mixed conductivity analysis of single crystals of a′′′ – (Cd1−x Znx)3As2 (x = 0.45). Materials Science. AIP, 11 (3): 035028.
Zhang Y. and Sarachik M. P. 1989. Phys. Rev. B, 39: 8059.
Zhang Y., Dai P. and Sarachik M. P. 1992. Magnetoconductance of CdSe in the hopping regime: The effect of quantum interference. Phys. Rev. B, 45: 9473.
Abstract views: 130
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2022 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.