Solution of the nonlinear ordinary differential equation of Ermakov by power series

DOI:

https://doi.org/10.52575/2687-0959-2022-54-3-171-177

Keywords:

mathematical modeling, symbolic-numerical methods, software packages, differential equation, nonlinear ordinary differential equation of second order, equation of Ermakov, power series

Abstract

Nonlinear differential equations are widely used in various modern sciences. In particular, the nonlinear ordinary differential equation of Ermakov is successfully used to solve problems in quantum mechanics, electrodynamics, optics, elasticity theory, to describe molecular structures, in heterostructures with a complex potential function and in many other branches of theoretical and mathematical physics. However, there is currently no effective method for solving nonlinear equations such as the Ermakov equation. For example, when solving eigenvalue problems, known modern authors calculated solutions of the Ermakov equation by direct numerical methods. As is known from the works of Ermakov himself and other modern authors, the solution of the Ermakov equation is determined by two linearly independent solutions of a suitable so-called attached linear differential equation of the second order. The theory of integration of linear differential equations by power series is mathematically strictly developed, in particular, for the attached linear equations to the Ermakov equation, the convergence of power series representing the solution of the attached linear differential equations is proved. In this paper, these linearly independent solutions of the attached linear equation were calculated in the form of power series using the MAPLE analytical computing computer system and for a number of Ermakov equations, their solutions were constructed in the form of power series, in general, with an arbitrary number terms. By direct substitution, it was shown that the power series obtained in this way satisfy the Ermakov equation. The obtained solutions in the form of power series containing also a spectral parameter can be successfully applied to solving eigenvalue problems, in particular for solving the stationary Schrodinger equation.

Downloads

References

Белецкий В. В., Розов Н. Х. 2005. К 70-летию Л. М. Берковича. Вестник СамГУ, Естественнонаучная серия, 6(40): 5–14.

Беляева И. Н., Уколов Ю. А., Чеканов Н. А. 2005. Построение общего решения дифференциальных уравнений фуксовского типа в виде степенных рядов. Свидетельство об отраслевой регистрации разработки в Отраслевом фонде алгоритмов и программ. М.: ВНТИЦ, №50200500089.

Беляева И. Н., Богачев В. Е., Чеканов Н. А. 2012. Алгоритм символьно-численного вычисления функции Грина дифференциальных уравнений второго порядка. Вестник РУДН, Серия Математика, Информатика, Физика, 3: 43–51.

Беляева И. Н., Богачев В. Е., Чеканов Н. А. 2012. Символьно-численное вычисление функции Грина обыкновенных дифференциальных уравнений второго и третьего порядков. Вестник Херсонского национального технического университета, 2(45): 50–55.

Беляева И. Н., Чеканов Н. А., Кириченко И. А., Чеканова Н. Н. 2019. Символьно-численные методы решения дифференциальных уравнений классической и квантовой механики. Харкiв: “ICMA”, 420.

Беркович Л. М., Розов Н. Х. 1972. Некоторые замечания о дифференциальных уравнениях вида y′′ + a(x)y = f (x)ya . Дифференциальные уравнения, 8(11): 2076–2079.

Зайцев В. Ф., Полянин А. Д. 1997. Справочник по линейным обыкновенным дифференциальным уравнениям. М.: Изд-во .Факториал., 304.

Ермаков В. П. 1880. Дифференциальные уравнения второго порядка. Условия интегрируемости в конечном виде. Киев, Универ. Изв., 9: 1–25.

Матвеев Н. М. 1963. Методы интегрирования обыкновенных дифференциальных уравнений. М.: Высшая школа, 546.

Соловьев Е. А. 1984. Уравнение Милна и высшие порядки ВКБ приближения. Письма в ЖЭТФ, 39(2): 84–86.

Трикоми Ф. 1962. Дифференциальные уравнения. М.: Изд-во иностранной литературы, 352.

Чеканова Н. Н., Чеканов Н. А. 2013. Инварианты одномерного гармонического осциллятора с зависящей от времени частотой. Вестник ХНТУ, 2(47): 372–374.

Athorne C. 1990. Geometry of Ermakov systems. Nonlinear Evolution Equations and Dynamical systems (NEEDS’90), Proc. of the 6th International Workshop, 16-26 July, USSR.: 100–103.

Belyaeva I., Kirichenko I., Ptashny O., Chekanova N., Yarkho T. 2021. Integrating linear ordinary fourthorder differential equations in the MAPLE programming environment. Eastern-European Journal of Enterprise Technologies, 3/4(111 ): 51–57.

Hansen R. M., Lidsey J. E. 2002. Ermakov-Pinney equation in scalar field cosmologies. Phys. Rev. D, 66. 023523.

Korsch H. J., Laurent H. 1981. Milne’s differential equation and numerical solutions of the Shrodinger equation I. Bound-state energies for single- and double-minimum potentials. J. Phys. B.: At. Mol. Phys., 14: 4213–4230.

Korsch H. J., Laurent H., Mohlenkamp R. 1982. Milne’s differential equation and numerical solutions of the Schrodinger equation II. Complex energy resonance states. J. Phys. B: At. Mol. Phys., 15: 1–14.

Lewis H. R. 1968. Motion of a time-dependent harmonic oscillator, and of a charged particle in a class of time-dependent, axially symmetric electromagnetic fields. Phys. Rev., 172(5): 1313–1315.

Milne W. 1930.The numerical determination of characteristic numbers. Phys. Rev., 35: 863–867.

Pinney E. 1950. The nonlinear differential equation. Proc. Amer. Math. Soc.: 581.

Schuch D. 2008. Riccati and Ermakov equations in Time-Dtpendent and Time-Independent Quantum Sestems. SIGMA 4, 043: 16.


Abstract views: 299

Published

2022-09-30

How to Cite

Solution of the nonlinear ordinary differential equation of Ermakov by power series. (2022). Applied Mathematics & Physics, 54(3), 171-177. https://doi.org/10.52575/2687-0959-2022-54-3-171-177

Issue

Section

Physics. Mathematical modeling