Exterior Differential Systems of stochastic Dynamic

Authors

  • Svetlana Telkova Voronezh Institute of the Ministry of the Interior of Russia

DOI:

https://doi.org/10.52575/2687-0959-2022-54-4-213-218

Keywords:

Cartan Distributions, Ito Equation, Euler – Lagrange equation

Abstract

In article geometry of stochastic differential equations is considered. Based correlation relations for the mean of the Wiener process an extension of the Cartan distributions is proposed. In spite of features intertwining independent variables this distribution admits existence of Lie’s fields and their lifts. Geometric formulation of problem of the variations calculus involves the Cartan distributions as nonholonomic connection and introduction of a differential 1-form of momentum as the Lagrange multiplier. On the basis of this the Euler – Lagrange equation that realizing the Ito equation as an extremal of some functional was obtained in the work, as well as the system of Jacobi equations in Hamiltonian form.

Downloads

Download data is not yet available.

Author Biography

Svetlana Telkova, Voronezh Institute of the Ministry of the Interior of Russia

PhD, Assistant Professor of the Chair of Higher Mathematics, Voronezh Institute of the Ministry of the Interior of Russia,
Voronezh, Russia

References

Виноградов А. М., Красильшик И. С. (ред.) 1997. Симметрии и законы сохранения уравнений математической физики. М., Факториал, 368.

Гриффитс Ф. 1986. Внешние дифференциальные системы и вариационное исчисление. М., Мир, 360.

Ибрагимов Н. Х. 1983. Группы преобразований в математической физике. М., Наука, 280.

Оксендаль Б. 2003. Стохастические дифференциальные уравнения. М., Мир, 408.

Тихонов А. Н., Самарский А. А. 1999. Уравнения математической физики. М.: Изд-во МГУ, 408.


Abstract views: 95

##submission.share##

Published

2022-12-30

How to Cite

Telkova, S. (2022). Exterior Differential Systems of stochastic Dynamic. Applied Mathematics & Physics, 54(4), 213-218. https://doi.org/10.52575/2687-0959-2022-54-4-213-218

Issue

Section

Mathematics