On origin of low impact toughness for the 12% Cr steels with a low N content
DOI:
https://doi.org/10.52575/2687-0959-2022-54-4-252-260Keywords:
Heat-Resistant Martensitic Steels, Heat Treatment, Alloying, Impact Toughness, Ductile – Brittle Transition Temperature, StructureAbstract
The 12% Cr steels with a low nitrogen content can be used as promising materials for the production of steam turbine blades in the thermal power plants. It was found that the resistance to impact loads of such steels is very low. Under impact load at room temperature, the value of impact toughness did not exceed 30 J cm−2 that didn’t meet the requirements for blade materials of steam turbine thermal power plants. To determine the origin of the low value of impact resistance, two 12% Cr steels with a low N content were analyzed using optical metallography, transmission and scanning electron microscopy. The possible structural elements can be detected as the sources causing brittle fracture of the samples. First, the high fraction of delta-ferrite, the boundaries at which are covered with the secondary phase particles enriched in chromium and tungsten. Second, the large W2B particles, enriched in tungsten, are randomly distributed over the matrix. Third, М23С6 carbides located along the boundaries of the martensitic laths form the continuous chains, which act as the thin brittle layers. These elements restrict the propagation of plastic deformation under impact loads.
Acknowledgements
The work is supported by the inner-university funding of the Belgorod National Research University "Young Leaders in Science"within the framework of the project "Science of the 21st century"of the Priority-2030 program
Downloads
References
Кайбышев Р.О., Скоробогатых В. Н., Щенкова И. А. 2010. Новые стали мартенситного класса для тепловой энергетики. Физика металлов и металловедение, 109(2): 200–215.
Федосеева А., Никитин И., Дудова Н., Кайбышев Р. 2020. Анализ механических свойств жаропрочных Сo-модифицированных 12%Cr и 9%Сr сталей. Физика металлов и металловедение, 121(12): 1338-1344.
Alkan G., Chae D., Kim S.-J. 2013. Effect of delta-ferrite on impact property of hot-rolled 12Cr–Ni steel. Sci. Technol. Weld. Join. 9: 377-389.
Anderko K., Schafer L., Materna-Morris E. 1991. Effect of the delta-ferrite phase on the impact properties of martensitic chromium steels. J. Nucl. Mater., 179-181: 492-495.
Bladesha H.K.D.H. 2001. Design of ferritic creep-resistant steels. ISIJ Int., 41: 626-640.
CarrougeD., Bhadeshia H.K.D.H.,Woollin P. 2004. Effect of delta-ferrite on impact properties of supermartensitic stainless steel heat affected, Sci. Technol. Weld. Join., 9: 377-389.
Chatterjee A., Chakrabarti D., Moitra A., Mitra R., Bhaduri A. 2014. Effect of normalization temperatures on ductile–brittle transition temperature of a modified 9Cr–1Mo steel. Mater. Sci. Eng. A., 618: 219–231.
Cui Ch., Gao X., Su G., Gao C., Liu Zh., Misra R.D.K. 2018. Effect of thermal treatment on the evolution of delta ferrite in 11Cr–3Co–2.3W steel. Mater. Sci. Technol., 34: 2087-2096.
Hald J. 2008. Microstructure and long-term creep properties of 9–12%Cr steels. Int. J. Press. Vessels Pip., 85: 30–37.
Harrelson K.J., Rou S.H., Wilcox R.C. 1986. Impurity element effects on the toughness of 9Cr-1Mo steel. J. Nucl. Mater. 141–143: 508–512.
Hu J., Liu K., Ma L., Misra R.D.K., Zhang W., Du H., Xu W. 2021. Significant improvement in strength and toughness of nanoscale precipitate–strengthened steel by direct quenching and tempering process. Steel Res. Int. 92: 2000331.
Kern T. U., Staubli M., Scarlin B. 2002. The European efforts in material development for 650C USC power plants – COST522. ISIJ Int, 242: 1515-1519.
Knezevic V., Balun J., Sauthoff G., Inden G., Schneider A. 2008. Design of martensitic/ferritic heat-resistant steels for application at 923 K with supporting thermodynamic modeling. Mater. Sci. Eng. A, 477: 334–343.
Maruyama K., Sawada K., Koike J. 2001. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int., 41: 641-653.
Mishnev R., Dudova N., Fedoseeva A., Kaibyshev R. 2016. Microstructural aspects of superior creep resistance of a 10%Cr martensitic steel. Mater.Sci. Eng. A, 678: 178–189.
Niessen F., Tiedje N., Hald J. 2017. Kinetics modeling of delta-ferrite formation and retainment during casting of supermartensitic stainless steel. Mater. Des., 118: 138-145.
Nikitin I., Fedoseeva A., Kaibyshev, R., 2020. Strengthening mechanisms of creep-resistant 12%Cr–3%Co steel with low N and high B contents. J. Mater. Sci., 55(17): 7530-7545.
Pandey Ch., Mahapatra M., Kumar P., Saini N., Thakare J., Vidyathy R.S., Narang H.K. 2018. A brief study on delta-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties. Arch. Civ. Mech. Eng., 18: 713-722.
Schafer L. 1998. Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel. J. Nucl. Mater., 262: 1336-1339.
Wang P., Lu S.P., Xiao N.M., Li D.Z., Li Y.Y. 2010. Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater. Sci. Eng. A., 527: 3210-3216.
Abstract views: 95
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2022 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.