Hopping Conductivity in Single Crystals of Eutectic Composite (InSb)98.2 - (NiSb)1.8
DOI:
https://doi.org/10.52575/2687-0959-2023-55-4-354-360Keywords:
indium antimonide, nickel antimonide, eutectic composite, Hall effect, hopping conductivityAbstract
The eutectic composite material (InSb)98.2 - (NiSb)1.8 was obtained. The material consists of a single crystal InSb semiconductor matrix and oriented NiSb needles. By X-ray diffraction, it was found that the InSb semiconductor matrix had a zinc blende structure F43m with a crystal lattice parameter equal to a = 6.49(1) Å. The NiSb needles had a hexagonal structure of the nickel arsenide type P63/mmc, the unit cell parameters of the NiSb needles were a = 3.94(1), c = 5.14(1) Å. The electrical conductivity of eutectic composite material (InSb)98.2 - (NiSb)1.8 was measured. The mechanisms of electrical conductivity were determined for a singlecrystal composite sample. The region of realization of the variable range hopping mechanism of Shklovsky-Efros was established in the absence of a magnetic field. The temperature of the beginning of the hopping conductivity was calculated Тν = 126.1 К. Microscopic parameters were calculated for the sample (InSb)98.2 - (NiSb)1.8 when the NiSb needles were oriented parallel to the direction of the magnetic field and perpendicular to the direction of the current through the sample. Was determined the width of the Coulomb gap ∆ = 6.3 meV, the dielectric permittivity к = 11, the density of the localized states g0 = 1.66 · 1016 cm-3 meV-1 and the localization radius a = 245.8 Å.
Downloads
References
Du Z, He J, Chen X, et al. Point defect engineering in thermoelectric study of InSb. Intermetallics. 2019;112:106528.
Luo F, Wang J, Zhu C, et al. 18-Electron half-Heusler compound Ti 0.75 NiSb with intrinsic Ti vacancies as a promising thermoelectric material. Journal of Materials Chemistry A. 2022;10(17):9655-9669.
Razeghi M. Overview of antimonide based III-V semiconductor epitaxial layers and their applications at the center for quantum devices. The European Physical Journal-Applied Physics. 2003;23(3):149-205.
Брюквин Д.В., Раухман М.Р., Шалимов В.П. Влияние различных условий конвективного перемешивания расплавов на структуру и магнитосопротивление направленно закристаллизованных эвтектических сплавов InSb-NiSb. Кристаллография. 2004;49(2):350-355.
Mamedov IKh, Arasly DH, Khalilova AA, et al. Anisotropic electrical properties of a eutectic InSb + MnSb composite. Inorganic Materials. 2016;52:423-428.
Zhao J, Li N, Cheng Y. All-dielectric InSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion. Optics Communications. 2023;536:129372.
Pendharkar M, Zhang B,Wu H, et al. Parity-preserving and magnetic field–resilient superconductivity in InSb nanowires with Sn shells. Science. 2021;372(6541):508-511.
Su M, Li J, He K, et al. NiSb/nitrogen-doped carbon derived from Ni-based framework as advanced anode for lithium-ion batteries. Journal of Colloid and Interface Science. 2023;629:83-91.
Weiss H. Structure and Application of Galvanomagnetic Devices: International Series of Monographs on Semiconductors. Elsevier. 2014.
Zheng XM, You JH, Fan JJ, et al. Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy. 2020;77:105123.
Friedrich J, Muller G. Erlangen - An Important Center of Crystal Growth and Epitaxy: Major Scientific Results and Technological Solutions of the Last Four Decades. Crystal Research and Technology. 2020;55(2):1900053.
Jesenovec J, Zawilski KT, Alison P, et al. Controlling Morphology of NiSb Needles in InSb through Low Temperature Gradient Horizontal Gradient Freeze. Journal of Crystal Growth. 2023;127440.
Ivanov O, Zakhvalinskii V, Pilyuk E, et al. Resistivity superconducting transition in single-crystalline Cd0.95Ni0.05Sb system consisting of non-superconducting CdSb and NiSb phases. Chinese Journal of Physics. 2021;72:223-228.
Laiho R, Lashkul A, Lisunov K, et al. Hopping conductivity of ni-doped p-CdSb. Journal of Physics: Condensed Matter. 2008;20(29):295204-295214.
Tran T, Wong-Leung J, Smillie L, et al. High hole mobility and non-localized states in amorphous germanium. APL Materials. 2023;11(4).
Немов С.А., Равич Ю.И. Прыжковая проводимость по сильно локализованным примесным состояниям индия в PbTe и твердых растворах на его основе. Физика и техника полупроводников. 2002;36(1):3-23.
Abstract views: 53
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2023 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.