Direct Products of Cyclic Semigroups Allowing Outerplanar Cayley Graphs and Their Generalizations
DOI:
https://doi.org/10.52575/2687-0959-2024-56-1-13-20Keywords:
Semigroup, Cayley Graph, Outerplanar Graph, Direct ProductAbstract
The characteristic properties of outerplanarity and generalized outerplanarity of Cayley graphs of direct products of cyclic semigroups are proved in terms of copresentations. The main idea of the proof of the theorems given in the article is the following: if the conditions discovered as a result of the study are met, then the semigroup admits a generalized outer-plane [respectively, outer-plane] layout of its Cayley graph (that is, such a layout in which each edge belongs to one face of at least one of its vertices, and the edges do not intersect in the plane) [accordingly, such a layout in which all the vertices belong to the same face, and the edges do not intersect in the plane]; conversely, according to the law of contraposition, if the found conditions are not met, then a subgraph is indicated that is homeomorphic to one of the forbidden configurations. The reasoning is carried out by analogy with the study of semigroups admitting planar graphs, while the forbidden configurations are changed to new ones, due to the Chartrand-Harari and Sedlacek criterion.
Downloads
References
Мартынов П.О., Соломатин Д.В. Конечные свободные коммутативные полугруппы и полугруппы с нулём, допускающие обобщенные внешнепланарные графы Кэли. Вестник Омского университета. 2014;3(73):22–26.
Мартынов П.О. Конечные свободные коммутативные моноиды, допускающие обобщенно внешнепланарные графы Кэли. Вестник Омского университета. 2015;4:6–9.
Мартынов П.О. Рассыпчатые полугруппы, допускающие обобщенные внешнепланарные графы Кэли. Вестник Омского университета. 2018;3:6–9.
Harary F. Graph Theory: Advanced Book Program Series. Boulder: Westview Press; 1994. 284 p.
Zelinka B. Graphs of Semigroups. Cˇasopis pro peˇstova’ni’matematiky. 1981;106:407–408. (in Czech)
Maschke H. The representation of finite groups. American Journal of Mathematics. 1896;18:156–194.
Емеличев В.А., Мельников О.И., Сараванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука; 1990. 384 с.
Зыков А.А. Основы теории графов. М.: Наука; 1987. 384 с.
Sedla’cˇek J. On a generalization of outerplanar graphs. Cˇasopis pro peˇstova’ni’matematiky. 1988;113(2):213–218. (in Czech)
Sedla’cˇek J. On local properties of graphs again. Cˇasopis pro peˇstova’ni’matematiky. 1989;114(4): 381–390. (in Czech)
Oubi ˜ na L., Zucchello R.A Generalization of outerplanar graphs. Discrete Mathematics, North-Holland. 1984;51:243–249.
Sysło M.M. On some generalizations of outerplanar graphs: Results and open problems. In: Tinhofer, G., Schmidt, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 1986. Lecture Notes in Computer Science. Springer, Berlin: Heidelberg; 1987. 246 p. DOI: 10.1007/3-540-17218-1_56
C’aceres J., M’arquez A. A linear algorithm to recognize maximal generalized outerplanar graphs. Mathematica Bohemica. 1997;122(3):225–230.
Соломатин Д.В. Прямые произведения циклических полугрупп, допускающие планарный граф Кэли. Сибирские Электронные Математические Известия. 2006;3:238–252.
Соломатин Д.В. Строение полугрупп, допускающих внешнепланарные графы Кэли. Сибирские Электронные Математические Известия. 2011;8:191–212.
Abstract views: 80
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2024 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.