Formation of Macrolocalized Deformation Bands Near Stress Concentrators in an Aluminum-Magnesium Alloy

Authors

  • Alexander A. Shibkov Derzhavin Tambov State University
  • Victor A. Fedorov Derzhavin Tambov State University
  • Alexander E. Zolotov Derzhavin Tambov State University
  • Sergey S. Kochegarov Derzhavin Tambov State University
  • Eugene A. Shibkov Derzhavin Tambov State University
  • Valeria M. Zheltova Derzhavin Tambov State University

DOI:

https://doi.org/10.52575/2687-0959-2024-56-2-163-170

Keywords:

Methane Portevin – Le Chatelier Effect, Stress Concentrator, Deformation Band

Abstract

Spontaneous self-localization of deformation in deformable metals and alloys is a negative phenomenon that worsens their operational physicochemical, strength, and anti-corrosion properties and can cause sudden destruction. This problem is especially important for high-tech aluminum alloys, in which localized Chernov–Luders deformation bands and Portevin – Le Chatelier bands are observed. In this work, using high-speed video recording and computer processing of digital images, we study the dynamics and morphology of deformation bands initiated by stress concentrators of various natures in an aluminum-magnesium alloy deformed under uniaxial tension conditions. It has been established that even corrosion pits, small scratches and indenter imprints are capable of initiating the nucleation and propagation of macrolocalized deformation bands into the material volume, the interaction of which causes the development of a main crack.

 

Acknowledgements The work is supported by the Russian Science Foundation (project No. 23-79-01119) with the use of equipment of the Center of Collective Use of Tambov State University.

Downloads

Download data is not yet available.

Author Biographies

Alexander A. Shibkov, Derzhavin Tambov State University

Doctor of Physical and Mathematical Sciences, Professor of the Department of Theoretical and Experimental Physics, Derzhavin Tambov State University, Tambov, Russia

Victor A. Fedorov, Derzhavin Tambov State University

Doctor of Physical and Mathematical Sciences, Professor of the Department of Theoretical and Experimental Physics, Derzhavin Tambov State University, Tambov, Russia

Alexander E. Zolotov, Derzhavin Tambov State University

Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of
Theoretical and Experimental Physics, Derzhavin Tambov State University, Tambov, Russia

Sergey S. Kochegarov, Derzhavin Tambov State University

Doctor of Technical Sciences, Professor, Head of the Department of Physics, Derzhavin Tambov State University, Tambov, Russia

Eugene A. Shibkov, Derzhavin Tambov State University

Postgraduate Student of the Department of Theoretical and Experimental Physics, Derzhavin Tambov
State University, Tambov, Russia

Valeria M. Zheltova, Derzhavin Tambov State University

Postgraduate student of the Department of Theoretical and Experimental Physics, Derzhavin Tambov
State University, Tambov, Russia

References

Kubin L.P., Fressengeas C., Ananthakrishna G. Collective behaviour of dislocations in plasticity. Dislocat. Solids, 2002;11:101. DOI.org/10.1016/S1572-4859(02)80008-0

Yilmaz A.J. The Portevin-Le Chatelier effect: a review of experimental findings.Sci. Technol. Adv. Mater. 2011;12:063001(16 pp). DOI.10.1088/1468-6996/12/6/063001

Shibkov A.A., Gasanov M.F., Zheltov M.A., Zolotov A.E., Ivolgin V.I. Intermittent plasticity associated with the spatio-temporal dynamics of deformation bands during creep tests in an AlMg polycrystal. Int. J. Plast.2016;86:37-55.DOI.org/10.1016/j.ijplas.2016.07.014

Шибков А.А., Золотов А.Е. Нелинейная динамика пространственно-временных структур макролокализованной деформации. Письма в Журнал экспериментальной и теоретической физики. 2009;90(5):412-417.

Хилл Р. Математическая теория пластичности. М., Гостехиздат;1976. 280 с.

Криштал М.М. Взаимосвязь неустойчивости и неоднородности пластической деформации. Диссертация доктора физ.-мат. наук: 01.04.07. Тольятти. Тольяттинский государственный университет. 2002. 331 с.

Панин В.Е., Деревягина Л.С., Дерюгин Е.Е. и др. Закономерности стадии предразрушения в физической мезомеханике. Физическая мезомеханика. 2003;6(6):97-106.

Панин В.Е., Гриняев Ю.В. Физическая мезомеханика – новая парадигма на стыке механики деформируемого твердого тела. Физическая мезомеханика. 2003;6(4):9-36.

Деревягина Л.С., Панин В.Е., Гордиенко А.И. Самоорганизация пластических сдвигов в макрополосах локализованной деформации в шейке высокопрочных поликристаллов и ее роль в разрушении материала при одноосном растяжении. Физическая мезомеханика. 2007;10(4):59-72.

Партон В.З. Механика разрушения. М., ЛКИ; 2010. 240 с.

Владимиров В.И. Физическая природа разрушения металлов. М., Металлургия; 1984. 280 с.

Cottrell A.H. Theory of brittle fracture in steel and similar metals. Trans. Met. Soc. AIME.1958;38(2):192-203.

Stroh A.N. The formation of cracks as a result of plastic flow. Proc.Roy.Soc.A,1954;223:404-414. DOI.org/10. 1098/rspa.1954.0124

Halim H., Wilkinson D.S., Niewczas M. The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy. Acta Mater.2007;55:4151-4160.DOI:10.1016/j.actamat.2007.03.007

Tomason P.F. Ductile fracture of metals. Pergamon Press., Oxford; 1990. 327 p.

Колачев Б.А., Елагин В.И., Ливанов В.А. Металловедение и термическая обработка цветных металлов и сплавов. М., МИСиС; 2001. 416 с.

Лексовский А.М., Баскин Б.Л. Некоторые аспекты зарождения и развития трещин микро- и мезомасштаба и квазихрупкое разрушение однородных материалов. Физика твердого тела, 2011;53(6):1157.

Бык М.В. Об участии гидрооксидных ионов в анодном растворении металлов в водных растворах электролитов. Защита металлов, 2004;40(3):321-324.


Abstract views: 62

##submission.share##

Published

2024-06-30

How to Cite

Shibkov, A. A., Fedorov, V. A., Zolotov, A. E., Kochegarov, S. S., Shibkov, E. A., & Zheltova, V. M. (2024). Formation of Macrolocalized Deformation Bands Near Stress Concentrators in an Aluminum-Magnesium Alloy. Applied Mathematics & Physics, 56(2), 163-170. https://doi.org/10.52575/2687-0959-2024-56-2-163-170

Issue

Section

Physics. Mathematical modeling

Most read articles by the same author(s)