MAGNETIC PROPERTIES, MECHANISMS OF ELECTRICAL CONDUCTIVITY AND MAGNETORESISTANCE IN La0.5Sr0.5Mn1−yFeyO3 AT 0 ≤ y ≤ 0.1
DOI:
https://doi.org/10.52575/2687-0959-2020-52-4-271-285Keywords:
hopping conductivity, Jahn - Teller effect, ceramics, magnetic field, temperature dependenceAbstract
We investigated the influence of Fe doping on the magnetic properties, mechanisms of electrical conductivity and magnetoresistance of polycrystalline La0.5Sr0.5MnO3, which is in a state of phase separation. The results show that at a Fe concentration ≤ 5%, in the entire temperature range under study, the long-range order of the charge-ordered (CO) state is weakened. This leads to the fact that short-range CO clusters are embedded in a ferromagnetic (FM) metal matrix, with the electrical resistance indices decreasing to the phase of a homogeneous metal. However, further doping with Fe leads to the opposite tendencies, which is explained by the effect of weakening the double exchange, which is dominant at Fe concentrations > 5%. The temperature dependence of the resistivity in the region of the CO phase obeys the mechanism of hopping conductivity with a variable hopping length of the Shklovsky - Efros type. This behavior is determined by the appearance of a soft Coulomb gap ∆ ≈ 0.32 eV in the density of localized states and a hard gap δv, which was calculated and discussed. An analysis of the field dependence of the resistivity at fixed temperatures indicated the presence of the colossal magnetoresistance (CMR) effect in the sample with a Fe concentration of ≈ 10%, and a possible explanation was given.Downloads
References
Горьков Л. П. 1998. Решеточные и магнитные эффекты в легированных манганитах. Успехи физических наук, 168(6): 665–671.
Усатый И. М. и др. 2019. Исследование электропроводности манганита перовскита La0.5Sr0.5MnO3.
Известия Юго-Западного Государственного Университета. Серия: Техника И Технологии, 9(30):68–77.
Усатый И. М. и др. 2020. Магнитный фазовый переход в La1-xSrMn1FeO3 Известия Юго-Западного Государственного Университета. Серия: Техника И Технологии, 10(1):57–70.
Ahn K. H. et al. 1996. Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe. Physical Review B, 54(21): 15299–15302.
Akimoto T. et al. 1998. Antiferromagnetic metallic state in doped manganites. Phys. Rev. B., 57(10): R5594–R5597.
Bhaskar A., Huang M.-S., Liu C.-J. 2017. Effects of Fe doping on the thermal hysteresis of the La0.5Ca0.5MnO3 system. RSC Adv., 7(19): 11543–11549.
Biswas A. et al. 1999. The Density of States of hole-doped Manganites: A Scanning Tunneling Microscopy/ Spectroscopy study. Phys. Rev. B., 59(8): 5368–5376.
Chen X. et al. 2009. Nonmagnetic B-site impurity-induced ferromagnetic tendency in CE-type manganites. Phys. Rev. B., 79(2): 024410.
Сulo M. et al. 2017. Magnetotransport properties of La1CaMnO3: Signature of phase coexistence. Thin Solid Films, 631: 205–212.
Dagotto E. 2005. Open questions in CMR manganites, relevance of clustered states and analogies with other compounds including the cuprates. New J. Phys., 7: 67–67.
Dhiman I. et al. 2011. Influence of B - site Disorder in La0.5Ca0.5Mn1 Manganites. J. Phys.: Condens. Matter., 23(24): 246006.
Fujishiro H., Fukase T., Ikebe M. 1998. Charge Ordering and Sound Velocity Anomaly in La1SrMnO3. J. Phys. Soc. Jpn., 67(8): 2582–2585.
Haghiri-Gosnet A.-M., Renard J.-P. 2003. CMR manganites: physics, thin films and devices. Journal of Physics D: Applied Physics, 36(8): R127–R150.
Hbert S. et al. 2002. Important role of impurity eg levels on the ground state of Mn-site doped manganites. Solid State Communications, 121(5): 229–234.
Hemberger J. et al. 2002. Structural, magnetic and electrical properties of single crystalline La1SrMnO3 for 0.4
Ioffe A.F., Regel A.R. 1960. Non-Crystalline, Amorphous, and Liquid Electronic Semiconductors, 291.
Izumi M. et al. 2000. La1SrMnO3 superlattices composed of ferromagnetic and antiferromagnetic layers. Phys. Rev. B., 61(18): 12187–12195.
Khomskii D., Khomskii L. 2003. Fine mist versus large droplets in phase separated manganites. Phys. Rev. B., 67(5): 052406.
Kimura T. et al. 2000. Variation of charge-orbital correlation with Cr doping in manganites. Phys. Rev. B., 62(22): 15021–15025.
Krichene A. et al. 2016. Correlation between electrical and magnetic properties of polycrystalline La0.5Ca0.5Mn0.98Bi0.2O3. Journal of Magnetism and Magnetic Materials, 408: 116–120.
Laiho R. et al. 2002. Variable-range hopping conductivity in La1CaMn1FeO3: evidence of a complex gap in density of states near the Fermi level. J. Phys.: Condens. Matter., 14(34): 8043–8055.
Levy P. et al. 2001. Effects of Fe doping in La1.2Ca1.2MnO3. Journal of Magnetism and Magnetic Materials, 226(230): 794–796.
Li Y. et al. 2010. Effects of Fe doping on magnetic and transport properties in Pr0.75Na0.25MnO3. Phys. Status Solidi (a), 207(1): 194–198.
Mansouri M. et al. 2016. Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3. Journal of Magnetism and Magnetic Materials, 401: 593–599.
Millis A.J., Littlewood P.B., Shraiman B.I. 1995. Double Exchange Alone Does Not Explain the Resistivity of La1SrMnO3. Phys. Rev. Lett., 74(25): 5144–5147.
Moritomo Y. et al. 2004. Impurity-induced ferromagnetism and impurity states in Nd1.2Ca1.2(Mn0.95M0.05)O3. Phys. Rev. B., 69(21): 212407.
Mott N.F., Davis E.A. 2012. Electronic Processes in Non-Crystalline Materials. OUP Oxford.
O’Donnell J. et al. 1997. Low-field magnetoresistance in tetragonal La1CaMnO3 films. Phys. Rev. B., 55(9): 5873–5879.
Ogale S.B. et al. 1998. Transport properties, magnetic ordering, and hyperfine interactions in Fe-doped La0.75Ca0.25MnO3: Localization-delocalization transition. Phys. Rev. B., 57(13): 7841–7845.
Orlova T.S. et al. 2006. Effect of Fe doping on structure, charge ordering, magnetic and transport properties of La0.33Ca0.67Mn1FeO3. J. Phys.: Condens. Matter., 18(29): 6729–6748.
Patil S.I. et al. 2000. Indications of phase separation in polycrystalline La1SrMnO3. Phys. Rev. B., 62(14): 9548–9554.
Roy M. et al. 1998. Doping-induced transition from double exchange to charge order in La1CaMnO3. Phys. Rev. B., 58(9): 5185–5188.
Shenoy V.B., Rao C.N.R. 2008. Electronic phase separation and other novel phenomena and properties exhibited by mixed-valent rare-earth manganites and related materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1862): 63–82.
Shklovskii B.I., Efros A.L. 1984. Electronic Properties of Doped Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg.
Tokura Y. 2006. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys., 69(3): 797–851.
Uehara M. et al. 1999. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature, 399(6736): 560–563.
Usatyy I.M. et al. 2020. Variable-range hopping conductivity in La1SrMn1FeO3. Ferroelectrics, 561(1): 12–22.
Varma C.M. 1996. Electronic and magnetic states in the giant magnetoresistive compounds. Physical Review B., 54(10): 7328–7333.
Viret M., Ranno L., Coey J.M.D. 1997. Magnetic localization in mixed-valence manganites. Physical Review B., 55(13): 8067–8070.
Wagner P. et al. 1998. Spin Dependent Hopping and Colossal Negative Magnetoresistance in Epitaxial Nd0.52Sr0.48MnO3 Films in Fields up to 50 T. Phys. Rev. Lett., 81(18): 3980–3983.
Yaicle C. et al. 2004. Effect of trivalent cation substitution for manganese upon ferromagnetism in Ln0.57Ca0.43MnO3 (Ln=Pr, Nd). Solid State Communications, 132(7): 487–492.
Zakhvalinskii V.S. et al. 2011. Variable-range hopping conductivity of La1SrMn1FeO3. Journal of Physics: Condensed Matter, 23(1): 015802.
Zhou H.-D. et al. 2002. Transport properties of La1CaMnO3. Eur. Phys. J. B., 26(4): 467–471.
Abstract views: 273
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2020 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.