Mathematical Modeling of Information Diffusion in Social Network
DOI:
https://doi.org/10.52575/2687-0959-2025-57-4-272-278Keywords:
Mathematical Modeling, Social Networks, Information DiffusionAbstract
This work aims to develop a modified diffusion model of information spreading in social networks based on a one-dimensional parabolic equation. The model’s key feature is its strict physical basis for all parameters, enabling a transition from qualitative to quantitative estimates. The study treats information as a continuous function of the number of users distributing the news. The method of integral averaging applied in the model ensures an adequate transition to the discrete structure of the social graph. The novelty of the approach lies in the explicit definition of distributed information sources through the free term of the equation, which includes a Heaviside theta function. This formulation reflects the real activation mechanism of users who become secondary sources. We conducted numerical experiments using real Twitter data on the spread of news about the Higgs boson discovery. The test results demonstrate the model’s high accuracy: the normalized root-mean-square error between the simulated and experimental data was 0,7%. The obtained results confirm the hypothesis about the applicability of physical diffusion laws for describing information flows in social networks.
Acknowledgements
The work was supported by the Azov-Black Sea Mathematical Center (Agreement № 075-02-2025-1608 of February 27, 2025).
Downloads
References
Список литературы
Granovetter M. Threshold Models of Collective Behavior. American Journal of Sociology. 1978;83(6):1420–1443.
Kempe D., Kleinberg J., Tardos E. Maximizing the Spread of Influence through a Social Network. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003:137–146.
Daley D.J., Gani J. Epidemic Modelling: An Introduction. Cambridge: Cambridge University Press; 1999. 234 p.
Dritsas E., Trigka M. Machine Learning in Information and Communications Technology: A Survey. Information. 2024;16(1):8. https://doi.org/10.3390/info16010008
Wang F., Wang H., Xu K. Characterizing Information Diffusion in Online Social Networks with Linear Diffusive Model. 2013 IEEE 33rd International Conference on Distributed Computing Systems. 2013:307–316. https://doi.org/10.1109/ICDCS.2013.14
Hu Y., Song R.J., Chen M. Modeling for Information Diffusion in Online Social Networks via Hydrodynamics. IEEE Access. 2017;5:128–135. https://doi.org/10.1109/ACCESS.2016.2605009
Krivorotko O., Zvonareva T., Zyatkov N. Numerical Solution of the Inverse Problem for Diffusion-Logistic Model Arising in Online Social Networks. In: A. Strekalovsky et al. (eds.) MOTOR 2021, CCIS 1476. Cham: Springer; 2021:444–459. https://doi.org/10.1007/978-3-030-86433-0_31
Arabov M., Shaydullina A. Identification of the Original Author of a Social Media Post Based on Text Analysis, Time Dependencies, and the Structure of Reposts Using Combined Neural Networks. 2025 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 2025:437–441.
Звонарева Т.А., Кабанихин С.И., Криворотько О.И. Численный алгоритм определения источника диффузионно-логистической модели по данным интегрального типа, основанный на тензорной оптимизации. Журнал вычислительной математики и математической физики. 2023;63(9):1513–1523. https://doi.org/10.31857/S0044466923090193
Ben-Avraham D., Barrat A., Barthelemy M., Vespignani A. Dynamical Processes on Complex Networks. Journal of Statistical Physics. 2009;135:773–774. https://doi.org/10.1007/s10955-009-9761-x
Nicosia V., Latora V. Measuring and modeling correlations in multiplex networks. Physical Review E. 2015;92:032805. https://doi.org/10.1103/PhysRevE.92.032805
Lazer D.M.J., Pentland A., Watts D.J., et al. Computational social science: Obstacles and opportunities. Science. 2020;369(6507):1060–1062. https://doi.org/10.1126/science.aaz8170
De Domenico M., Lima A., Mougel P., Musolesi M. The Anatomy of a Scientific Rumor. Scientific Reports. 2013;3(2980):1–9. https://doi.org/10.1038/srep02980
Толстых В.К. Практическая оптимизация, идентификация распределенных систем. М.: Наука; 2025. 355 с.
Tolstykh M.A. Identifying the Capacity of a Social Network. Moscow University Computational Mathematics and Cybernetics. 2024;48(1):59–64. https://doi.org/10.3103/S0278641924010084
Кабанихин С.И., Криворотько О.И. Оптимизационные методы решения обратных задач иммунологии и эпидемиологии. Журнал вычислительной математики и математической физики. 2020;60(4):590–600. https://doi.org/10.31857/S0044466920040109
References
Granovetter M. Threshold Models of Collective Behavior. American Journal of Sociology. 1978;83(6):1420–1443.
Kempe D, Kleinberg J, Tardos E. Maximizing the Spread of Influence through a Social Network. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003:137–146.
Daley DJ, Gani J. Epidemic Modelling: An Introduction. Cambridge: Cambridge University Press; 1999. 234 p.
Dritsas E, Trigka M. Machine Learning in Information and Communications Technology: A Survey. Information. 2024;16(1):8. https://doi.org/10.3390/info16010008
Wang F,Wang H, Xu K. Characterizing Information Diffusion in Online Social Networks with Linear DiffusiveModel. 2013 IEEE 33rd International Conference on Distributed Computing Systems. 2013:307–316. https://doi.org/10.1109/ICDCS.2013.14
Hu Y, Song RJ, Chen M. Modeling for Information Diffusion in Online Social Networks via Hydrodynamics. IEEE Access. 2017;5:128–135. https://doi.org/10.1109/ACCESS.2016.2605009
Krivorotko O, Zvonareva T, Zyatkov N. Numerical Solution of the Inverse Problem for Diffusion-Logistic Model Arising in Online Social Networks. In: A. Strekalovsky et al. (eds.) MOTOR 2021, CCIS 1476. Cham: Springer; 2021:444–459. https://doi.org/10.1007/978-3-030-86433-0_31
Arabov M, Shaydullina A. Identification of the Original Author of a Social Media Post Based on Text Analysis, Time Dependencies, and the Structure of Reposts Using Combined Neural Networks. 2025 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 2025:437–441.
Zvonareva TA, Kabanikhin SI, Krivorotko OI. Numerical Algorithm for Source Determination in a Diffusion-Logistic Model from Integral Data Based on Tensor Optimization Computational Mathematics and Mathematical Physics. 2023;63:1654–1663. https://doi.org/10.1134/S0965542523090166
Ben-Avraham D., Barrat A., Barthelemy M., Vespignani A. Dynamical Processes on Complex Networks. Journal of Statistical Physics. 2009;135:773–774. https://doi.org/10.1007/s10955-009-9761-x
Nicosia V., Latora V. Measuring and modeling correlations in multiplex networks. Physical Review E. 2015;92:032805. https://doi.org/10.1103/PhysRevE.92.032805
Lazer D.M.J., Pentland A., Watts D.J., et al. Computational social science: Obstacles and opportunities. Science. 2020;369(6507):1060–1062. https://doi.org/10.1126/science.aaz8170
De Domenico M, Lima A, Mougel P, Musolesi M. The Anatomy of a Scientific Rumor. Scientific Reports. 2013;3(2980):1–9. https://doi.org/10.1038/srep02980
Tolstykh VK. Prakticheskaya optimizatsiya, identifikatsiya raspredelennykh sistem [Practical optimization, identification of distributed systems]. Moscow: Nauka; 2025. 355 p. (In Russian)
Tolstykh MA. Identifying the Capacity of a Social Network. Moscow University Computational Mathematics and Cybernetics. 2024;48(1):59–64. https://doi.org/10.3103/S0278641924010084
Kabanikhin S.I., Krivorotko O.I. Optimization Methods for Solving Inverse Immunology and Epidemiology Problems. Computational Mathematics and Mathematical Physics. 2020;60:580–589. https://doi.org/10.1134/S0965542520040107
Abstract views: 0
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2025 Applied Mathematics & Physics

This work is licensed under a Creative Commons Attribution 4.0 International License.
