ON THE EXISTENCE OF A SOLUTION OF A PERIODIC BOUNDARY VALUE PROBLEM FOR SEMILINEAR DIFFERENTIAL INCLUSIONS OF FRACTIONAL ORDER FROM THE INTERVAL (3,4) IN BANACH SPACES
DOI:
https://doi.org/10.52575/2687-0959-2021-53-4-266-283Keywords:
differential inclusion, fractional derivative, Green's function, condensing multioperator, measure of noncompactness, fixed point.Abstract
In this paper we study a periodic boundary value problem for a class of semilinear differential inclusions of fractional order from the interval (3,4) in a Banach space for which the multivalued nonlinearity satisfies the regularity condition expressed in terms of measures of noncompactness. We prove the existence of a solution to the problem, we first construct the corresponding Green's function. Then we introduce into consideration a multivalued resolving operator in the space of continuous functions and reduce the problem posed to the problem of the existence of fixed points of a resolving multioperator. We prove the existence of fixed points, by using a generalized B.N. Sadovskii type theorem.
Downloads
References
Афанасова М.С., Петросян Г.Г. 2019. О краевой задаче для функционально-дифференциального включения дробного порядка с общим начальным условием в банаховом пространстве. Известия вузов. Математика, 9:3–15. DOI: 10.26907/0021-3446-2019-9-3-15
Глушак А. В., Авад Х. К. 2013. О разрешимости абстрактного дифференциального уравнения дробного порядка с переменным оператором. СМФН. 47: 18–32.
Глушак А. В. 2010. Об одной обратной задаче для абстрактного дифференциального уравнения дробного порядка. Матем. заметки. 87 (5): 684–693.
Afanasova M., Liou Y. Ch., Obukhoskii V., Petrosyan G. 2019. On controllability for a system governed by a fractional-order semilinear functional differential inclusion in a Banach space. Journal of Nonlinear and Convex Analysis. 20: 1919–1935.
Bai Z., Lu H. 2005. Positive solutions for boundary-value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311(2): 495–505. DOI:10.1016/j.jmaa.2005.02.052
Belmekki M., Nieto J.J., Rodriguez-Lopez R. 2009. Existence of Periodic Solution for a Nonlinear Fractional Differential Equation. Boundary Value Problems.11: 1–18. DOI:10.1155/2009/324561
Belmekki M., Nieto J.J., Rodriguez-Lopez R. 2014. Existence of solution to a periodic boundary value problem for a nonlinear impulsive fractional differential equation. Electronic Journal of Qualitative Theory of Differential Equations. 16: 1–27. DOI:10.14232/ejqtde.2014.1.16
Bogdan V.M. 2010. Generalized vectorial Lebesgue and Bochner integration theory, arXiv:1006.3881v1 [math.FA], 86.
Diestel J., Ruess W.M., Schachermayer W. 1993. On weak compactness in
Abstract views: 2503
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2021 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.