THE TRICOMI PROBLEM FOR SOME CLASSES OF MULTIDIMENSIONAL MIXED HYPERBOLIC-PARABOLIC EQUATIONS
DOI:
https://doi.org/10.52575/2687-0959-2021-53-4-284-292Keywords:
Tricomi problem, multidimensional, equation, solvability, spherical functionsAbstract
It is known that in the mathematical modeling of electromagnetic fields in space, the nature of the electromagnetic process is determined by the properties of themedium. If themedium is non-conducting,we obtain degenerate multidimensional hyperbolic equations. If the medium has a high conductivity, then we come to degenerate multidimensional parabolic equations. Consequently, the analysis of electromagnetic fields in complex media (for example, if the conductivity of the medium changes) is reduced to degenerate multidimensional hyperbolic - parabolic equations. It is also known that the oscillations of elastic membranes in space can be modeled according to the Hamilton principle by degenerate multidimensional hyperbolic equations. The study of the process of heat propagation in a medium filled with mass leads to degenerate multidimensional parabolic equations. Therefore, by studying the mathematical modeling of the heat propagation process in oscillating elastic membranes,we also arrive at degenerate multidimensional hyperbolic - parabolic equations. When studying these applications, it becomes necessary to obtain an explicit representation of the solutions to the problems under study. Boundary value problems for hyperbolic - parabolic equations on the plane are well studied, and their multidimensional analogues are little studied. The Tricomi problem for these equations was previously investigated. As far as we know, this problem has not been studied in space. In this paper, we show that for some classes of multidimensional mixed hyperbolicparabolic equations, the Tricomi problem is ambiguously solvable.
Downloads
References
Алдашев С. А. 1994. Краевые задачи для многомерных гиперболических и смешанных уравнений. Алматы. Гылым, 170.
Алдашев С. А. 2015. Неединственность решения многомерной задачи Трикоми для гиперболо-параболического уравнения. Украинский математический вестник, 12 (1): 1–10.
Алдашев С. А. 1998. О задачах Дарбу для одного класса многомерных гиперболических уравнений. Дифференц. уравнения, 34 (1): 64–68.
Бейтмен Г., Эрдейи А. 1974. Высшие трансцендентные функции. М. Наука, 295.
Бицадзе А. В. 1959. Уравнения смешанного типа. М. Изд. АН СССР, 164.
Врагов В. Н. 1983. Краевые задачи для неклассических уравнений математической физики. Новосибирск. НГУ, 84.
Камке Э. 1965. Справочник по обыкновенным дифференциальным уравнениям. М. Наука, 703.
Колмогоров А. Н., Фомин С. В. 1976. Элементы теории функций и функционального анализа. М. Наука, 543.
Михлин С. Г. 1962. Многомерные сингулярные интегралы и интегральные уравнения. М. Физмат-гиз, 254.
Нахушев А. М. 2006. Задачи со смещением для уравнения в частных производных. М. Наука, 287.
Тихонов А. Н., Самарский А. А. 1977. Уравнения математической физики. М. Наука, 659.
Copson E. T. 1958. On the Riemann-Green function. J.Rath Meeh and Anal., 1: 324–348.
Abstract views: 256
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2021 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.