ON LINEARLY CONVEX HARTOGS REGIONS IN C2, WITH FRACTAL STRUCTURE

DOI:

https://doi.org/10.52575/2687-0959-2022-54-2-81-88

Keywords:

linear convex, Hartogs regions, fractal structure

Abstract

In the 1970s, it was proved that a bounded linearly convex domain with a smooth boundary in Cn is homeomorphic to an open ball. If the boundary of a bounded linearly convex domain in Cn is not smooth, then the domain may have different topological types. Only for n=2 complex plane projection a1z1 + . . . + anzn + c = 0 to the Hartogs (Hartogs) diagram in Cn with symmetry plane zn = 0 has a simple geometric form: it is a circular cone with vertex on the plane z2 = 0. This fact allows one to construct linearly convex Hartogs domains in C2 with symmetry plane z2 = 0, whose projection onto the Hartogs diagram has a fractal structure.

Downloads

Download data is not yet available.

References

Айзенберг Л. А., Южаков А. П. 1979. Интегральные представления и вычеты в многомерном комплексном анализе. Новосибирск: Наука. 368.

Владимиров В. С. 1964. Методы теории функций многих комплексных переменных. Москва: Наука. 412.

Шабат Б. В. 2004. Введение в комплексный анализ. Функция нескольких переменных: Учебник: В 2-х ч. Ч. 2. 4-е изд., стер. – СПб.: Издательство «Лань». 464.

Южаков А. П., Кривоколеско В. П. 1971. Некоторые свойства линейно выпуклых областей с гладкими границами в C


Abstract views: 134

##submission.share##

Published

2022-06-29

How to Cite

ON LINEARLY CONVEX HARTOGS REGIONS IN C2, WITH FRACTAL STRUCTURE. (2022). Applied Mathematics & Physics, 54(2), 81-88. https://doi.org/10.52575/2687-0959-2022-54-2-81-88

Issue

Section

Mathematics