STATISTICAL APPROACH OF THE DETERMINATION OF THE TENSILE STRENGTH OF SOLID POROUS MATERIAL

DOI:

https://doi.org/10.52575/2687-0959-2022-54-2-131-136

Keywords:

microcrack, sensile strength, fragile destruction, porous distribution, density, statistically independent random values

Abstract

The statistical model constructed in the previous works of the authors is analyzed. It allows to link the probability of the sample rupture under the action of an external load which stretches this sample if it represents a porous solid-state material. The catastrophic phenomenon of sample rupture is interpreted as a phase transition. The sensile strength p* of the material is calculated as a function of the pore density inside the sample.

Downloads

Download data is not yet available.

References

Вирченко Ю. П., Шеремет О. И. 2001. Геометрические модели статистической теории фрагментации. Теор. И мат. физика. 128(2): 161-177.

Вирченко Ю. П., Шаполова И. М. 2021. Распределение вероятностей критических напряжений разрыва образцов пористого материала. Прикладная математика & Физика. 53(4): 312–316.

Вирченко Ю. П. 1997. Пуассоновские среды. Энциклопедический словарь. Математическая физика. М.: Российская энциклопедия.

Batdorf S. B. 1973. A statistical theory for failure of brittle materials under combined stresses. AIAA Paper. 381: 1-5.

Batdorf S. B. 1975. Fracture statistics of brittle materials with intergranular cracks. Nucl. Eng. and Des. 35(3): 349-360.

Fisher J. C., Hollomon J. M. 1947. A statistical theory of fracture. Metals Technol. 14(5): 1-16.

Frenkel Ya. I., Kontorova T. A. 1943. A statistical theory of the brittle strength of real crystals. J. Phys. (Moscow). 7: 108.

Gilbert E. N. 1962. The Poisson random medium in statistical physics. Ann. Math. Statistics. 33(3): 958.

Griffith A. A. 1921. The Phenomenon of Rupture and Flow in Solids. Phil. Trans. Roy. Soc. of London. A221:163-198.

Griffith A. A. 1924. The Theory of Rupture. Proc/ First Inter. Cong. Appl. Mech., Delft. 55.

Hellan K. 1984. Introduction to Fracture Mechanics. New York: McGrow-Hill Book Company, 1984.

Gilvarry J. J. 1961. Fracture of Brittle Solids. II. Distribution Function for Fragment Size in Single Fracture (Experimental). J.Appl.Phys. 32 (3): 400-410.

Gilvarry J. J. 1961. Fracture of Brittle Solids. I. Distribution Function for Fragment Size in Single Fracture (Theoretical). J.Appl.Phys. 32(3): 391-399.

Irwin G. 1948. Fracture dynamics. Fracture of Metals. Cleveland: ASM.

Mechanics of fracture. 1973. vol.1 /Ed. G.C. Nordoff/ Leugen: Int. Publ.

Orowan E. 1950. Fundamentals of brittle behavior of metals. Fatigue and Fracture of Metals. New York: Willey.

Weibull W. 1949. A statistical representation of fatigue failure in solids. Trans. Roy. Inst. Tech. (Stocholm). 27: 27-43.

Virchenko Yu. P., 1998. Percolation Mechanism of Material Ageing and Distribution of the Destruction Time. Functional Materials. 5(1): 7-13.

Virchenko Yu. P., Sheremet O.I. 1999. The formation of destruction time distribution of material ageing by statistically independent perturbations. Functional Materials. 1999. 6(1): 5-12.

Weibull W.A. 1939. A statistical theory of the strength of materials. Proc. Roy. Swed. Inst. Eng. Res. 151: 5-45.

Zaiman J. M. 1979.Models of disorder. Theoretical physics of homogeneously disordered systems. NewYork: Cambridge University Press, 525.


Abstract views: 161

##submission.share##

Published

2022-06-29

How to Cite

STATISTICAL APPROACH OF THE DETERMINATION OF THE TENSILE STRENGTH OF SOLID POROUS MATERIAL. (2022). Applied Mathematics & Physics, 54(2), 131-136. https://doi.org/10.52575/2687-0959-2022-54-2-131-136

Issue

Section

Physics. Mathematical modeling