Theoretical analysis of the work of josephson cryotrons

Authors

DOI:

https://doi.org/10.52575/2687-0959-2023-55-2-166-175

Keywords:

Josephson Cryotron, Logic Element, LCJC (logical controlled Josephson contact), Cryoelectronics

Abstract

Various schemes of operation of Josephson cryotrons, technologies for their manufacture and methods of operation are considered; the solution of questions of the stability of the operation of logic gates, which are based on the Josephson effect, and the maximum permissible geometrical parameters of the cryotron, have been studied. The volt-ampere characteristic of the Josephson cryotron with four stable operating modes has been constructed; a system of differential equations was compiled that determines the transient response of cryotrons with given parameters under conditions of helium and nitrogen temperatures; recommendations for improving the characteristics of Josephson cryotrons are proposed, and prospects for further research are outlined.

Downloads

Download data is not yet available.

Author Biographies

Gennadiy Averin, Donetsk National University

Doctor of Engineering Sciences, Professor, Head of the Department of Computer Technologies, Donetsk National University,
Donetsk, DNR

Aleksey Spitsyn, Belgorod National Research University

4th year student of the Faculty of Mathematics and Science Pedagogical Institute, Belgorod State National Research University,
Belgorod, Russia

Maria Shevtsova, Belgorod National Research University

Candidate of Physics and Mathematics Sciences, Associate Professor of the Department of Mathematics, Belgorod National Research University,
Belgorod, Russia

References

Алфеев В. Н., Бахтин П. А., Васенков А. А. 1985. Интегральные схемы и микроэлектронные устройства на сверхпроводниках. М., Радио и связь, 232.

Игумнов В. Н. 2019. Основы высокотемпературной криоэлектроники: учебное пособие. 2-е изд., стер. – Москва; Берлин: Директ-Медиа, 238.

Патент RU 2298260 C1, H01L 39/24. 27.04.2007.

Патент RU 2364009 C1, H01L 39/18. 10.08.2009.

Патент RU 2080693 C1, H01L39/22. 27.05.1997.

Сатлер О. Н., Спицын А. О. 2021. Механизм пиннинга в технологии контроля старения материалов. Журнал технических исследований, 2: 53-65.

Спицын А. О. 2020. Закономерности туннелирования в технологиях контроля старения материалов и биохимической эволюции. Научный альманах, 12-2(74): 64-70.

Тиханский М. В., Шурыгин Ф. М., Тиханская К.М. 2003. Моделирование переходных процессов в джозефсоновских элементах памяти с использованием реальных ВАХ туннельных переходов. Вестник национального университета «Львовская политехника». Электроника, 482: 152-161.

Тинкхам М. 2013. Введение в сверхпроводимость. М.: Книга по Требованию, 310.

Chen Y., et al. 2009. Enhanced flux pinning by BaZrO3 and (Gd, Y)2O3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes. Appl. Phys. Lett., 94: 062513. DOI: 10.1063/1.3082037.

Faley M. I., Fiadziushkin H., Frohn B., Sch?ffelgen P., Dunin-Borkowski R. E. 2022. TiN nanobridge Josephson junctions and nanoSQUIDs on SiN-buffered Si. Superconductor Science and Technology, 35: 065001. DOI: 10.1088/1361-6668/ac64cd.

Gray R. L., Murphy S. T., Rushton M. J. D. 2022. Molecular dynamics simulations of radiation damage in YBa2Cu3O7. Superconductor Science and Technology., 35 (3): 035010. DOI: 10.1088/1361-6668/ac47dc.

Keren A., Blau N., Gavish N., Kenneth O., Ivry Y., Suleiman M. 2022. Stiffness and coherence length measurements of ultra-thin superconductors, and implications for layered superconductors. Superconductor Science and Technology, 35 (7): 075013. DOI: 10.1088/1361-6668/ac7173.

Menushenkov A. P., Ivanov A. A., Chernysheva O. V., et al. 2022. The influence of BaSnO3 and BaZrO3 nanoinclusions on the critical current and local structure of HTS coated conductors. Superconductor Science and Technology, 35. (6): 065006. DOI: 10.1088/1361-6668/ac68a6.

Russo R., Esposito E., Crescitelli A., Di Gennaro E., Granata C., Vettoliere A., Cristiano R., Lisitskiy M. 2016. NanoSQUIDs based on niobium nitride films. Superconductor Science and Technology, 30: 024009. DOI: 10.1088/1361-6668/30/2/024009.

Shishkin A. G., Skryabina O. V., Gurtovoi V. L., Dizhur S. E., Faley M. I., Golubov A. A., Stolyarov V. S. 2020. Planar MoRe-based dc nanoSQUID. Superconductor Science and Technology, 33: 065005. DOI: 10.1088/1361-6668/ab877c.

Soloviev I. I., Bakurskiy S. V., Ruzhickiy V. I., Klenov N. V., Kupriyanov M. Yu., Golubov A. A., Skryabina O. V., Stolyarov V. S. 2021. Miniaturization of Josephson Junctions for Digital Superconducting Circuits. Physical Review Applied, 16: 044060. DOI: 10.1103/PhysRevApplied.16.044060.

Sumption M. D., et al. 2008. Magnetization creep and decay in YBA2CU3O7-x thin films with artificial nanostructure pinning. Phys. Rev. B., 77: 094506. DOI: 10.1103/PhysRevB.77.094506.

Tolpygo S. K. 2016. Superconductor digital electronics: Scalability and energy efficiency issues. Low Temperature Physics, 42: 5. 361-378. DOI: 10.1063/1.4948618.

Troeman A. G. P., van der Ploeg S. H. W., Il’Ichev E, Meyer H-G, Golubov A. A., Kupriyanov M. Y., Hilgenkamp H. 2008. Temperature dependence measurements of the supercurrent-phase relationship in niobium nanobridges. Physical Review B, 77: 024509. DOI: 10.1103/PhysRevB.77.024509.


Abstract views: 247

##submission.share##

Published

2023-06-30

How to Cite

Averin, G., Spitsyn, A., & Shevtsova, M. (2023). Theoretical analysis of the work of josephson cryotrons. Applied Mathematics & Physics, 55(2), 166-175. https://doi.org/10.52575/2687-0959-2023-55-2-166-175

Issue

Section

Physics. Mathematical modeling