On the Structure of the Spectrum and the Resolvent Set of the Toeplitz Operator in a Countably Normed Space of Smooth Functions

Authors

DOI:

https://doi.org/10.52575/2687-0959-2023-55-3-228-235

Keywords:

Toeplitz Operator, Noetherianness, Invertibillity, Smooth Operator, Degenerate Operator, Factorization, Singular, Index, Spectrum

Abstract

In a countable normed space of smooth functions on the unit circle, we consider the Toeplitz operator with a smooth symbol. Boundedness, Notherianity and invtrbillity of such operators are studied. The concepts of a smooth canonical degenerate factorization on the minus type of smooth functions and the associated local degenerate canonical factorization of the minus type are introduced. Criteria are obtained in terms of the symbol for existence of a canonical degenerate factorization of type minus. As in the classical case of the Toeplitz operator in spaces of summable functions with Wiener symbols, the Toeplitz operator being Noterian turned out to be equivalent to the presence of a canonical factorization its symbol. The equivalence of the degenerate canonical factorizability is established, which makes it possible to use the localization of the symbol of certain characteristic arcs of the circle when studying Invertibility questions. The equivalence of the degenerate canonical factorizability is established, which makes it possible to use the localization of the symbol on certain characteristic arcs of the circle when studying Invertibility questions. Relations are obtained that relate the spectra of some Toeplitz operators in the spaces smooth and summable functions. A description is given of the resolvent set of the Toeplitz operator with smooth symbol.

Downloads

Download data is not yet available.

Author Biography

Alexander E. Pasenchuk, South-Russian State Polytechnic University named after V. I. Platov

Doctor of Physical and Mathematical Sciences, Professor, Professor of the Department of Applied Mathematics, Platov South-Russian State University,
Novocherkassk, Russia

References

Гахов Ф. Д. 1977. Краевые задачи. М., Наука, 638.

Гохберг И. Ц., Фельдман И.А. 1971. Уравнения в свертках и проекционные методы их решения. М., Наука, 352.

Гохберг И. Ц., Крупник Н. Я. 1973. Введение в теорию одномерных сингулярных интегральных уравнений. К., Штиинца, 426.

Пасенчук А. Э. 2013. Дискретные операторы типа свертки в классах последовательностей со степенным характером поведения на бесконечности. РнД., ЮФУ, 279.

Пасенчук А. Э., Серегина В. В. 2019. О матричном операторе Римана в пространстве гладких вектор-функций. Владикавказский математический журнал. 21(3): 50–61.

Пасенчук А. Э., Серегина В. В. 2022. О спектре оператора Теплица в счетно-нормированном пространстве гладких функций. Владикавказский математический журнал, 4(3): 96–107.

Пресдорф З. 1979. Некоторые классы сингулярных уравнений. М., Мир, 493.

Солдатов А. П. 1991. Одномерные сингулярные операторы и краевые задачи теории функций. M., Высшая школа, 210.


Abstract views: 75

##submission.share##

Published

2023-09-30

How to Cite

Pasenchuk, A. E. (2023). On the Structure of the Spectrum and the Resolvent Set of the Toeplitz Operator in a Countably Normed Space of Smooth Functions. Applied Mathematics & Physics, 55(3), 228-235. https://doi.org/10.52575/2687-0959-2023-55-3-228-235

Issue

Section

Mathematics