On One Method for Constructing Solutions to the Homogeneous Schwarz Problem

Authors

DOI:

https://doi.org/10.52575/2687-0959-2023-55-4-305-312

Keywords:

Douglis Analytic Functions, Lambda-Holomorphic Functions, Matrix Eigenvalue, Operator Basis, Ellipse

Abstract

The paper considers the homogeneous Schwarz problem for Douglis analytic or J-analytic functions. The 2-2-matrix J has eigenvalues λ,μ, lying above the real axis. The eigenvalues can be either distinct or multiples. In the second section of the paper there are given the problem statement and definitions of J-analytic and λ-holomorphic functions. At the beginning of the third section Lemma 3.1 is proved, establishing some relation between real and holomorphic functions. Then is constructed a special operator basis J. For matrices with multiple eigenvalue this basis coincides with the Jordan basis of the matrix J. Then with the help of this basis and Lemma 3.1 is constructed J-analytic function φ(z) in the form of a quadratic vector polynomial of some special form. If the eigenvalues λ,μ of the matrix J are fixed, then the function φ(z) depends on the elements of the first column of the matrix J as parameters. These parameters are chosen so that the real part of the function φ(z) has the form (P; 0), where P = P(x, y) is a positively defined quadratic form. All J-analytic functions are defined with the accuracy of the additive vector constant Therefore, the function φ(z) – (1, 0) will be the required solution to the homogeneous Schwarz problem in the ellipse Γ : P(x, y) = 1. Then the matrix J is reconstructed by the known elements of the first column and the eigenvalues λ,μ. The obtained result is formalized in the form of Theorem 3.1. At the end of the paper there are given six examples constructed according to the algorithm described above.

Downloads

Download data is not yet available.

Author Biography

Vladimir G. Nikolaev, Yaroslav-the-Wise Novgorod State University

Candidate of Physical and Mathematical Sciences, Associate Professor, Novgorod State University named after Yaroslav-the-Wise,
Velikiy Novgorod, Russia

References

Douglis A. Function theoretic approach to elliptic systems of equations in two variables. Communications on Pure and Applied Mathematics. 1953;6:259–289.

Paskali D. Vecturs analytiques generelises. Pure and Applied mathematics. 1965;10:779–808.

Horvath J. A generalization of the Cauchy-Riemann equations. Contrib. Differential Equations. 1961;1:39–57.

Gilbert RP. Analytic, generalized, hyper-analytic function theory and an application to elasticity. Proceedings of the Royal Society. 1975;73:317–371.

Bojarski B. Theory of generalized analytic vector. Annales Polonici Mathematici. 1966;17(3):281–320.

Hile GN. Elliptic systems in the plane with order term and constant coefficients. Communications on Pure and Applied Mathematics. 1978;3(10):949–977.

Солдатов А.П. Функции, аналитические по Дуглису. Белгород; 2016. 88 с.

Солдатов А.П. Эллиптические уравнения высокого порядка. Дифференциальные уравнения. 1989;25(1):136–142.

Soldatov AP. The Schwarz problem for Douglis analytic functions. Journal of Mathematical Sciences. 2011;2(173):221–224.

Векуа И.Н. Новые методы решения эллиптических уравнений. Москва; 1948. 367 с.

Бицадзе А.В. Краевые задачи для эллиптических уравнений второго порядка. Москва; 1966. 325 c.

Ieh RZ. Hyperholomorphic functions and higher order partial differentials equations in the plane. Pacific Journal of Mathematics. 1990;142(2):379–399.

Жура Н.И. Об общих решениях систем Лерая-Дуглиса-Ниренберга с постоянным коэффициентами на плоскости. Доклады РАН. 1993;331(5):546–549.

NikolaevVG. Schwarz Problem in Ellipse for Nondiagonalizable Matrices. Journal of Mathematical Sciences. 2020;6(251):876–901.

Николаев В.Г., Солдатов А.П. О решении задачи Шварца для J -аналитических функций в областях, ограниченных контуром Ляпунова. Дифференциальные уравнения. 2015;51(7):965–969.

Васильев В.Б., Николаев В.Г. О задаче Шварца для эллиптических систем первого порядка на плоскости. Дифференциальные уравнения. 2017;53(10):1351–1361.


Abstract views: 48

##submission.share##

Published

2023-12-30

How to Cite

Nikolaev, V. G. (2023). On One Method for Constructing Solutions to the Homogeneous Schwarz Problem. Applied Mathematics & Physics, 55(4), 305-312. https://doi.org/10.52575/2687-0959-2023-55-4-305-312

Issue

Section

Mathematics