On the Dirichlet Problem in a Plane Domain with a Cut

Authors

DOI:

https://doi.org/10.52575/2687-0959-2023-55-3-258-264

Keywords:

Pseudo-Differential Equation, Domain with a Cut, Dirichlet Problem, Solvability

Abstract

In the paper, a solvability of a model elliptic pseudo-differential equation in a plane domain with a cut along a ray is studied. Solution is sought in the Sobolev–Slobodetskii space. Using a special factorization for elliptic symbol one writes out a general solution for the equation in a domain with cut sector; this solution includes an arbitrary function. Using the Diriclet condition one reduces finding this function to solution of a system of one-dimensional linear integral equations. Further, one studies a behavior of these equations when the size if sector tends to zero, and the sectors transforms into a ray. As a result one obtains a certain integral equation, and a unique solvability of the equation is equivalent to a solvability of the Dirichlet problem in a plane domain with cut ray.

Downloads

Download data is not yet available.

Author Biographies

Nataliya N. Agarkova, Belgorod National Research University

Post Graduate Student, Department of Applied Mathematics and Computer Modeling, Belgorod National Research University,
Belgorod, Russia

Vladimir B. Vasilyev, Belgorod National Research University

Doctor of Physical and Mathematical Sciences, Associate Professor, Chair, Department of Applied Mathematics and Computer Modeling, Belgorod National Research University,
Belgorod, Russia

Hadish Gebreslasie, Belgorod National Research University

Post Graduate Student, Department of Applied Mathematics and Computer Modeling, Belgorod
National Research University,
Belgorod, Russia

References

Васильев В. Б. 2020. Краевые задачи для эллиптических псевдодифференциальных уравнений в многомерном конусе. Дифференциальные уравнения, 56(10): 1356–1365.

Васильев В. Б. 2010. Мультипликаторы интегралов Фурье, псевдодифференциальные уравнения, волновая факторизация, краевые задачи. М., УРСС, 136.

Васильев В. Б. 2020. Обобщенные функции, сосредоточенные на поверхности конуса, и порожденные ими свертки. Проблемы математического анализа, 103: 63–70.

Васильев В. Б. Потенциалы для эллиптических краевых задач в конусах. Сибирские электронные математические известия, 13: 1129–1149.

Владимиров В. С. 1964. Методы теории функций многих комплексных переменных. М., Наука, 414.

Гахов Ф. Д. 1977. Краевые задачи. М., Наука, 640.

Мусхелишвили Н. И. 1968. Сингулярные интегральные уравнения. М., Наука, 512.

Тейлор М. 1982. Псевдодифференциальные операторы. М., Мир, 472.

Эскин Г. И. 1973. Краевые задачи для эллиптических псевдодифференциальных уравнений. М., Наука, 407.

Kutaiba Sh., Vasilyev V. 2021. On limit behavior of a solution to boundary value problem in a plane sector. Mathematical Methods in the Applied Sciences, 44(15): 11904–11912.

Mikhlin S. G., Pr¨oßdorf S. 1986. Singular Integral Operators. Berlin, Akademie-Verlag, 125.

Vasilyev V. B. 2020. On certain 3-dimensional limit boundary value problems. Lobachevskii Journal Mathematics, 41(5): 917–925.

Vasilyev V. B. 2018. Pseudodifferential equations, wave factorization, and related problems. Mathematical Methods in the Applied Sciences, 41(18): 9252–9263.

Vasilyev V. B. 2019. Pseudo-differential equations and conical potentials: 2-dimensional case. Opuscula Mathematica, 39(1): 109–124.

Vasilyev V. B. 2000. Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Boundary Value Problems in Non-Smooth Domains. Dordrecht–Boston–London: Kluwer Academic Publishers, 267.


Abstract views: 111

##submission.share##

Published

2023-09-30

How to Cite

Agarkova, N. N., Vasilyev, V. B., & Gebreslasie, H. (2023). On the Dirichlet Problem in a Plane Domain with a Cut. Applied Mathematics & Physics, 55(3), 258-264. https://doi.org/10.52575/2687-0959-2023-55-3-258-264

Issue

Section

Mathematics

Most read articles by the same author(s)