Periodic Solutions of the Euler – Bernoulli Quasilinear Equation Vibrations of a Beam with an Elastically Fixed End

Authors

DOI:

https://doi.org/10.52575/2687-0959-2023-55-3-265-272

Keywords:

Quasilinear Euler-Bernoulli Equation, Beam Oscillation, Non-Resonance, Schauder Principle

Abstract

The problem of time-periodic solutions of the quasilinear Euler-Bernoulli equation of vibrations of a beam under
tension along the horizontal axis is considered. The boundary conditions correspond to the cases of elastically fixed, rigidly
fixed and hinged ends. The nonlinear term satisfies the nonresonance condition at infinity. Using the Schauder principle, we
prove a theorem on the existence and uniqueness of a periodic solution.

Downloads

Download data is not yet available.

Author Biography

Igor A. Rudakov, Moscow State Technical University. H. E. Bauman; Moscow Aviation Institute

Doctor of Physical and Mathematical Sciences, Professor, Moscow State Technical University. H. E. Bauman; Moscow Aviation Institute,
Moscow, Russia

References

Коллатц Л. 1968. Задачи на собственные значения. М., Наука, 504.

Наймарк М. А. 2010. Линейные дифференциальные операторы. М., Наука, 527.

Рудаков И. А. 2015. Периодические решения квазилинейного уравнения вынужденных колебаний балки. Известия РАН. Серия математическая, 79(5): 215-238. Doi: 10.4213/im8250.

Рудаков И. А. 2018. О периодических решениях одного уравнения колебаний балки. Дифференциальные уравнения, 54: 691–700. DOI: 10.1134/S0374064118050126.

Рудаков И. А. 2022. О существовании счётного числа периодических решений краевой задачи для уравнения колебаний балки с однородными граничными условиями. Дифференциальные уравнения, 58: 1062–1072. DOI: 10.31857/S0374064122080064, EDN: CFUKPN.

Треногин В. А. 1980. Функциональный анализ. М., Наука, 495.

Трикоми Ф. 1962. Дифференциальные уравнения. М., Издательство иностранной литературы, 350.

Chen B., Gao Y., Li Y. 2018. Periodic solutions to nonlinear Euler – Bernoulli beam equations. Dynamical systems, 1: 23–49.

Elishakoff I., Pentaras D. 2006. Apparently the first closed-form solution of inhomogeneous elastically restrained vibrating beams. J. Sound Vibration, 298: 439–445.

Eliasson L. H., Grebert B., Kuksin S. B. 2016. KAM for the nonlinear beam equation. Geometric and Functional Analysis, 26(6): 1588–1715.

Nazarov A. I., Nikitin Y. Y. 2004. Exact L2-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems. Probability Theory and Related Fields, 129(4): 469–494.

Rudakov I. A., Ji S. 2023. Infinitely many periodic solutions for the quasi-linear Euler -– Bernoulli beam equation with fixed ends. Calculus of Variations and Partial Differential Equations, 62:66. DOI: 10.1007/s00526-022-02404-3.

Yamaguchi M. 1995. Existence of periodic solutions of second order nonlinear evolution equations and applications. Funkcialaj Ekvacioj, 38: 519–538.


Abstract views: 93

##submission.share##

Published

2023-09-30

How to Cite

Rudakov, I. A. (2023). Periodic Solutions of the Euler – Bernoulli Quasilinear Equation Vibrations of a Beam with an Elastically Fixed End. Applied Mathematics & Physics, 55(3), 265-272. https://doi.org/10.52575/2687-0959-2023-55-3-265-272

Issue

Section

Mathematics