Conservative Semi-Lagrangian Algorithm for Advection Problem on Unstructured Triangular Grids
DOI:
https://doi.org/10.52575/2687-0959-2023-55-4-361-372Keywords:
Advection Problem, Semi-Lagrangian Approximation, Numerical Modeling, Triangular GridsAbstract
We develop the semi-Lagrangian algorithm on triangular grids for two-dimensional advection problem. The semi-Lagrangian method is established numerical technique in atmospheric modeling and other physical processes. It allows to achieve the Courant-Friedrichs-Lewy condition without restriction for time step. The method is based on the exact identity of spatial integrals on adjacent time layers. Numerical solution is constructed as a piecewise constant function on neighborhood of each grid node. The proposed method has first order of convergence for smooth solutions.
Acknowledgements
This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education of the Russian Federation in the framework of the establishment and development of regional Centers for Mathematics Research and Education (Agreement No. 075–02–2023–912).
Downloads
References
Wiin-Nielson A. On the application of trajectory methods in numerical forecasting. Tellus. 1959; 11: 180–186.
Levy D., Puppo G., and G. Russo. Central WENO schemes for hyperbolic systems of conservation laws. Mathematical Modelling and Numerical Analysis. 1999; 33(3): 547–571.
Shu C.-W., Osher S. Efficient implementation of essentially non-oscillatory shockcapturing schemes. Journal of Computational Physics. 1988; 77: 439–471.
Gottlieb S., Shu C.-W. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation. 1998; 67 (221): 73–85. DOI: 10.1090/S0025-5718-98-00913-2
Simmons A. Development of a high resolution, semi-Lagrangian version of the ecmwf forecast model. In Seminar on Numerical Methods in Atmospheric Models. ECMWF. 1991; 281-324.
Iske A., K¨aser M. Conservative semi-Lagrangian advection on adaptive unstructured meshes. Numerical Methods for Partial Differential Equations. 2004; 20: 388–411.
Terekhov K.M., Olshanskii M.A., Vassilevski Y.V. A semi-Lagrangian method on dynamically adapted octree meshes. Russian Journal of Numerical Analysis and Mathematical Modelling. 2015; 30 (6): 363–380. DOI: 10.1515/rnam-2015-0033
Staniforth A., Cote J. Semi-Lagrangian Integration Schemes for Atmospheric Models — A Review. Monthly Weather Review. 1991; 119: 2206-2223.
Falcone M., Ferretti R. Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. SIAM. 2013; 174 p.
Шайдуров В.В., Чередниченко О.М. Полулагранжевы аппроксимации оператора конвекции в симметричной форме. Вычислительные технологии. 2023; 28 (3): 101-116. doi: 10.25743/ICT.2023.28.3.007
Вяткин А.В., Кучунова Е.В., Шайдуров В.В. Полулагранжевый метод решения двумерного уравнения неразрывности с законом сохранения. Вычислительные технологии. 2017; 22 (5): 27-38.
Scroggs J.S., Semazzi F.H. A conservative semi-Lagrangian method for multi-dimensional fluid dynamics applications. North Carolina State University. Center for Research in Scientific Computation. 1993.
Shaydurov V., Vyatkin A., Kuchunova E. A Semi-Lagrangian Numerical Method for the Three-Dimensional Advection Problem with an Isoparametric Transformation of Subdomains. Numerical analysis and its application. 2017; 10187: 599-607. DOI: 10.1007/978-3-319-57099-0.
PironneauO.Onthe transport-diffusion algorithm and its applications to the Navier-Stokes equations. NumerischeMathematik. 1982; 38(3): 309–332.
Carlini E., Falcone M., and Ferretti R. A time-adaptive semi-Lagrangian approximation to mean curvature motion. Numerical Mathematics and Advanced Applications. 2006; 732–739.
Losasso F., Fedkiw R., Osher S. Spatially adaptive techniques for level set methods and incompressible flow. Computational Fluids. 2006; 35: 995-1010. DOI: 10.1016/j.compfluid.2005.01.006
Wang K. A uniformly optimal-order error estimate of an ELLAM scheme for unsteady-state advection-diffusion equations. International journal of numerical analysis and modeling. 2008; 5(2): 286-302.
Arbogas T., Wen-Hao Wang. Convergence of a fully conservative volume corrected characteristic method for transport problems. SIAM Journal of numerical analysis. 2010; 48(3): 797-823. DOI:10.1137/09077415X
Vyatkin A., Kuchunova E., Shaydurov V. The conservative semi-Lagrangian approximation for three-dimensional convection-diffusion problem. AIP Conference Proceedings. 2022; 2522: 1100010. DOI: 10.1063/5.0100835
Shaydurov V., Efremov A., Gileva L. Semi-Lagrangian difference approximations for distinct transfer operators. AIP Conference Proceedings. 2018; 2025: 020004. DOI: 10.1063/1.5064877
Xiong T., Russo G., Qiu J. Conservative multi-dimensional semi-Lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations. Journal of scientific computing. 2019; 79(2). DOI:10.1007/s10915-018-0892-6.
Shaidurov V.V., Vyatkin A.V., Kuchunova E.V. Semi-Lagrangian difference approximations with different stability requirements. Russian journal of numeriacl analysis and mathematical modelling. 2018; 33(2): 123-135. DOI: 10.1515/rnam-2018-0011
Lentine M., Gretarsson J.T., Fedkiw R. An unconditionally stable fully conservative semi-Lagrangian method. Journal of Computational Physics. 2011; 230: 2857-2879.
Dementyeva E., Karepova E, Shaidurov V. The semi-Lagrangian method for the Navier-Stokes problem for an incompressible fluid. AIP conference procedings. 2017; 1895: 110001. DOI: 10.1063/1.5007407
Celledonia E., Kometaa B. K., Verdiera O. High order semi-Lagrangian methods for the incompressible Navier-Stokes equations. Journal of Scientific Computing. 2016; 91-115 DOI:10.1007/s10915-015-0015-6
Shaydurov V., Shchepanovskaya G., Yakubovich M., Liu T. A semi-Lagrangian approximation in the Navier-Stokes equations for the gas flow around a wedge. AIP Conference Proceedings. 2015; 1684: 090011. DOI: 10.1063/1.4934336
Jonathan R. Sh. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry. 2002; 22: 21-74.
Abstract views: 55
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2023 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.