Mixed Problem on Forced Oscillations of a Bounded String Under Nonstationary Characteristic Oblique Derivatives in Boundary Modes
DOI:
https://doi.org/10.52575/2687-0959-2024-56-2-97-113Keywords:
Characteristic Mixed Problem, Bounded String, Nonstationary Boundary Conditions, Characteristic First Oblique Derivatives, Classical Solution, Correctness CriterionAbstract
Explicit recurrent formulas are given for the unique and stable classical solution of the characteristic mixed problem for the inhomogeneous simplest vibration equation of a bounded string. For any moment of time in the characteristic boundary conditions at the ends of the string, the oblique derivatives with time-dependent coefficients are directed along the critical characteristics of the equation. A correctness criterion of this mixed problem is derived, i.e. necessary and sufficient smoothness requirements and matching conditions the characteristic boundary conditions with the initial conditions and
the string vibration equation for the existence, uniqueness and stability of its classical solutions. The derivation of matching conditions essentially uses the new concept of criterion values for the sum of the highest derivatives of the right-hand side of the equation. These results were obtained by the well-known method of auxiliary mixed problems for a semi-bounded string, `which does not require explicit periodic continuations of the mixed problems data outside their definition sets.
Downloads
References
Барановская О.Н., Юрчук Н.И. Смешанная задача для уравнения колебания струны с зависящей от времени косой производной в краевом условии. Дифференциальные уравнения. 2009;45(8):1188–1191.
Шлапакова Т.С, Юрчук Н.И. Смешанная задача для уравнения колебания ограниченной струны с зависящей от времени производной в краевом условии, направленной по характеристике. Вестник Белорусского государственного университета. Сер. 1. 2013;2:84–90.
Ломовцев Ф.Е. Метод вспомогательных смешанных задач для полуограниченной струны. Материалы Международной математической конференции: "Шестые Богдановские чтения по обыкновенным дифференциальным уравнениям" (7–10 декабря 2015 г.) Минск: Институт математики НАН Беларуси. 2015;2:74–75.
Ломовцев Ф.Е., Точко Т.С. Гладкие решения смешанной задачи для простейшего уравнения колебаний полуограниченной струны при характеристической первой косой производной на конце. Веснiк Вiцебскага дзяржаўнага ўнiверсiтэта. 2023;3(120):20–36.
Ломовцев Ф.Е. Необходимые и достаточные условия вынужденных колебаний полуограниченной струны с первой характеристической косой производной в нестационарном граничном условии. Весцi НАН Беларусi. Серыя фiзiка-матэматычных навук. 2016;1:21–27.
Новиков Е.Н. Смешанные задачи для уравнения вынужденных колебаний ограниченной струны при нестационарных граничных условиях с первой и второй косыми производными. [диссертация]. Минск: БГУ; 2017. 258 c.
Ломовцев Ф.Е., Точко Т.С. Смешанная задача для неоднородного уравнения колебаний ограниченной струны при характеристических нестационарных первых косых производных на концах. Веснiк Гродзенскага дзяржаунага унiверсiтэта iмя Янкi Купалы. Серыя 2. Матэматыка. Фiзiка. Iнфарматыка, вылiчальная тэхнiка i кiраванне. 2019;9(2):56–75.
Ломовцев Ф.Е., Точко Т.С. Достаточные условия корректности смешанной задачи для уравнения колебаний ограниченной струны с зависящими от времени характеристическими первыми косыми производными на концах. Материалы Международной научной конференции по дифференциальным уравнениям: "ЕРУГИНСКИЕ ЧТЕНИЯ–2019" (14–17 мая 2019 г.) Минск: Институт математики НАН Беларуси. 2019;2:27–29.
Ломовцев Ф.Е., Точко Т.С. Гладкие решения начально-граничной задачи для уравнения колебаний полуограниченной струны при характеристической первой косой производной. Материалы Международной конференции: "Воронежская зимняя математическая школа" (28 января – 2 февраля 2021 г.) Воронеж: Издательский дом ВГУ: 2021;195–198.
Точко Т.С., Ломовцев Ф.Е. Гладкие решения смешанной задачи для уравнения колебаний струны при характеристической первой косой производной на полупрямой. Материалы Международной конференции: "Воронежская весенняя математическая школа «Понтрягинские чтения – XXХIII»" (3–9 мая 2022 г.) Воронеж: Издательский дом ВГУ. 2022;237–239.
Точко Т.С., Юрчук Н.И., Ломовцев Ф.Е. О необходимых условиях корректности краевой задачи для уравнения колебания ограниченной струны с зависящими от времени характеристическими первыми косыми производными на концах. Материалы Международной научной конференции по дифференциальным уравнениям:
"ЕРУГИНСКИЕ ЧТЕНИЯ–2019" (15–18 мая 2018 г.) Минск: Институт математики НАН Беларуси. 2018;2:36–38.
Mokrousov S. Mixed problems for the string vibration equation with nonlocal conditions of the general form at the right endpoint and with an inhomogeneous condition at the left endpoint. Differential equations. 2017;53(4):509–515.
Кожанов А.И., Дюжева А.В. Интегральный аналог первой начально-краевой задачи для гиперболических и параболических уравнений второго порядка. Математические заметки. 2022;111(4):540–550.
Хромов А.П., Корнев В.В. Расходящиеся ряды в методе Фурье для волнового уравнения. Труды Института математики и механики. УрО РАН. 2021;27(4):215–238.
Ломов И.С. Обобщенная формула Даламбера для телеграфного уравнения в случае существенно несамосопряженного оператора. Материалы Международной конференции: "Воронежская весенняя математическая школа «Понтрягинские чтения – XXХIII»" (3–9 мая 2020г.) Воронеж: АНО <Наука-Юнипресс>: 2020;124–126.
Ломовцев Ф.Е. Метод корректировки пробных решений общего волнового уравнения в первой четверти плоскости для минимальной гладкости его правой части. Журнал Белорусского государственного университета. Математика. Информатика. 2017;3:38–52.
Abstract views: 96
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2024 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.