On Increased Summability of the Solution to the Dirichlet Problem for a Second-Order Linear Elliptic Equation with Drift

Authors

  • Alexandra G. Chechkina Institute of Mathematics with a Computer Center – a division of the Ufa Federal Research Center of the Russian Academy of Sciences

DOI:

https://doi.org/10.52575/2687-0959-2024-56-2-124-135

Keywords:

Higher Integrability of the Solution Gradient, Boyarsky – Meyers Inequality, Dirichlet Boundary Value Problem

Abstract

This paper is devoted to study of the Dirichlet problem in bounded Lipschitz domain for linear second order equation with drift (lower terms). Assuming that the coefficients of the first-order derivatives belong to the Lebesgue class, we prove Theorem of existence and uniqueness of solutions to this problem, i.e. we show the unique solvability of this problem. Cases of different dimensions of space are analyzed. We also prove the Boyarsky–Meyers inequality, i.e. we prove higher integrability of the gradient of solutions to the Dirichlet problem in bounded Lipschitz domain for the Laplacian with lower order terms.
The proof of main theorems is based on obtaining the inverse H¨older inequality for the gradient of the solution to the Dirichlet problem with subsequent application of the generalized Hering lemma. The Boyarsky – Meyers inequalities are useful for homogenization theory and in asymptotic methods.

Downloads

Download data is not yet available.

Author Biography

Alexandra G. Chechkina, Institute of Mathematics with a Computer Center – a division of the Ufa Federal Research Center of the Russian Academy of Sciences

Candidate of Physical and Mathematical Sciences, Senior Lecturer of the Department of Mathematical Analysis, M. V. Lomonosov Moscow State University, Moscow, Institute of Mathematics with a Computer
Center – a division of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia

References

Боярский Б.В. Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами. Математический сборник. 1957;43(85)4:451–503

Meyers N.G. An Lp –estimate for the gradient of solutions of second order elliptic deivergence equations Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3-e s’erie. 1963;17(3):189–206.

Zhikov V.V. On some Variational Problems. Russian Journal of Mathematical physics. 1997;5(1):105–116.

Acerbi E., Mingione G. Gradient estimates for the p(x)-Laplacian system. J. Reine Angew. Math. 2005;584:117–148.

Diening L., Schwarzsacher S. Global gradient estimates for the p(・)-Laplacian. Nonlinear Anal. 2014;106:70–85.

Cimatti G., Prodi G. Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor. Ann. Mat. Pura Appl 1988;63:227–236.

Howison S.D., Rodriges J.F., Shillor M. Stationary solutions to the thermistor problem. Journal Math. Anal. Appl. 1993;174:573–588.

Алхутов Ю.А., Чечкин Г.А. Повышенная суммируемость градиента решения задачи Зарембы для уравнения Пуассона. Доклады РАН. 2021;497(2):3–6.

Chechkin G.A. The Meyers Estimates for Domains Perforated along the Boundary. Mathematics 2021;9(23):Art number 3015.

Alkhutov Yu.A., Chechkin G.A. The Meyer’s Estimate of Solutions to Zaremba Problem for Second-order Elliptic Equations in Divergent Form. C R M’ecanique. 2021;349(2):299–304.

Alkhutov Yu.A., Chechkin G.A., Maz’ya V.G. On the Bojarski – Meyers Estimate of a Solution to the Zaremba Problem. Arch. Rational Mech. Anal. 2022;245(2):1197–1211.

Чечкин Г.А., Чечкина Т.П. Оценка Боярского – Мейерса для дивергентных эллиптических уравнений второго порядка. Два пространственных примера. Проблемы математического анализа. 2022;119:107–116.

Чечкина А.Г. О задаче Зарембы для p-эллиптического уравнения. Математический сборник. 2023;214(9):144–160.

Апушкинская Д.Е., Назаров А.И. Лемма о нормальной производной и вокруг неё. УМН 2022;77(2):3–68.

Stampacchia G. Le probl`eme de Dirichlet pour les ’equations elliptiques du second ordre `a coefficients discontinus. Ann. Inst. Fourier (Grenoble) 1965;15(1):189–257.

Lax P.D., Milgram A. Parabolic equations, in Contributions to the Theory of Partial Differential Equations. Ann. Math. Studies. vol. 33. Princeton: Princeton University Press; 1954. p. 167–190.

Гилбарг Д., Трудингер Н.С. Эллиптические дифференциальные уравнения с частными производными второго порядка. Москва: Наука; 1989.

Gehring F.W. The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 1973;130:265–277.

Giaquinta M., Modica G. Regularity results for some classes of higher order nonlinear elliptic systems. Journ. fur die reine und angewandte Math. 1979;311/312:145–169.

Skrypnik I.V. Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. Translations of Math. Monographs. Vol.139. Providence: AMS; 1994.


Abstract views: 90

##submission.share##

Published

2024-06-30

How to Cite

Chechkina, A. G. (2024). On Increased Summability of the Solution to the Dirichlet Problem for a Second-Order Linear Elliptic Equation with Drift. Applied Mathematics & Physics, 56(2), 124-135. https://doi.org/10.52575/2687-0959-2024-56-2-124-135

Issue

Section

Mathematics