Numerical Method for Solving the Reaction-Diffusion Equation

Authors

  • Olga P. Barabash Military Educational and Scientific Centre of the Air Force N. E. Zhukovsky and Y. A. Gagarin Air Force Academy

DOI:

https://doi.org/10.52575/2687-0959-2025-57-1-52-58

Keywords:

Reaction-Diffusion Equation, Fisher Equation, KPP Equation, Difference Scheme, Weighted Scheme, Finite Fifference Approximation, Computational Experiment

Abstract

Mathematical models with this equation are widely used in ecology, physiology, combustion, crystallization, plasma physics, and in general phase transition problems. In this article, we are interested in the finite-difference approximation of the initial-boundary value problem with the KPP-F equation. For this, a two-layer difference scheme "with weights" was built, having an approximation order of O(h2 + τ). The used scheme made it possible to reduce the problem of finding a solution to a nonlinear equation to solving a system of linear algebraic equations using the sweep method. If

Downloads

Download data is not yet available.

Author Biography

Olga P. Barabash, Military Educational and Scientific Centre of the Air Force N. E. Zhukovsky and Y. A. Gagarin Air Force Academy

Lecturer of the Department of Mathematics and Informatics, Military Educational and Scientific Centre of the Air Force N. E. Zhukovsky and Y. A. Gagarin Air Force Academy,
Voronezh, Russia
E-mail: navyS9@yandex.ru
ORCID: 0009-0006-6376-3015

References

Список литературы

Колмогоров А.Н. Исследование уравнения диффузии, соединенной с возрастанием вещества, и его применение к одной биологической проблеме. Бюллетень МГУ, Серия А, Математика и механика.1937;1(64):1–16.

Fisher R.A. The wave of advance of advantageous genes.The Annals of Human Genetics. 1937;7:355–369.

Hotelling Н. A mathematical theory of migration. Environ Plan A. 1978;10(11):1223–1239.

Мешков В.З., Половинкин И.П., Семенов М.Е. Об устойчивости стационарного решения уравнения Хотеллинга. Обозрение прикладной и промышленной математики. 2002;9(1):226–227.

Danilov V.G., Maslov V.P., Volosov V.P. Mathematical Modelling of Heat and Mass Transfer Processes. Dordrecht: Kluwer; 1995. 323 p.

Кудряшов Н.А. О точных решениях уравнений семейства Фишера. Теоретическая и математическая физика. 1993;2(94):296–306.

Matus P.P., Hieu L.M., Vulkov L.G. Analysis of second order difference schemes on non-uniform grids for quasilinear parabolic equations. Journal of Computational and Applied Mathematics. 2017;300:186–199.

Matus P.P. Stability of Difference Schemes for Nonlinear Time-dependent Problems. Computational Methods in Applied Mathematics. 2003;3(2):313–329.

Матус П.П., Утебаев Б.Д. Монотонные разностные схемы повышенного порядка точности для параболических уравнений. Доклады Национальной академии наук Беларуси. 2020;64(4):391–398.

Самарский А.А. Введение в теорию разностных схем. М.: Наука. 1971. 553 с.

Самарский А.А., Гулин А.В. Численные методы. М.: Наука. Физматлит. 1989. 432 с.

Barabash O.P., Polovinkina M.V., Polovinkin I.P., Zhadanova M.L. On a difference scheme for the Growth-Propagation Equation. Lobachevskii Journal of Mathematics. 2023;44(3):989–992.

Ильина К.П. Эффективный численный метод решения задачи Фишера – Колмогорова – Петровского – Пискунова. Международный научно-исследовательский журнал. 2023;3(129).

References

Kolmogorov AN. Issledovanie uravneniya diffuzii, soedinennoj s vozrastaniem veshchestva, i ego primenenie k odnoj biologicheskoj probleme [Investigation of the Equation of Diffusion Combined with Increasing of the Substance and Its Application to a Biology Problem]. Byul. MGU. Ser. A. Matematika i mekhanika [Bulletin of Moscow State University Series A: Mathematics and Mechanics]. 1937;1(64):1–16.

Fisher RA. The wave of advance of advantageous genes. The Annals of Human Genetics. 1937;7:355–369.

Hotelling Н. A mathematical theory of migration. Environ Plan A. 1978;10(11):1223–1239.

Meshkov VZ, Polovinkin IP, Semenov ME. On the stability of a stationary solution of the Hotelling equation. Applied and Industrial Mathematics Review. 2002;9(1):226–227. (In Russ.)

Danilov VG, Maslov VP, Volosov VP. Mathematical Modelling of Heat and Mass Transfer Processes. Dordrecht: Kluwer; 1995. 323 p.

Kudriashov NA. On exact solutions of the Fisher family equations.Theoretical and Mathematical Physics. 1993;2(94):296–306. (In Russ.)

Matus PP., Hieu LM., Vulkov LG. Analysis of second order difference schemes on non-uniform grids for quasilinear parabolic equations. Journal of Computational and Applied Mathematics. 2017;300:186–199.

Matus PP. Stability of Difference Schemes for Nonlinear Time-dependent Problems.Computational Methods in Applied Mathematics. 2003;3(2):313–329.

Matus PP, Utebaev BD. Monotonnye raznostnye skhemy povyshennogo poryadka tochnosti dlya parabolicheskih uravnenij [Monotone difference schemes of higher accuracy for parabolic equations]. Dokl. Nacional’noj akademii nauk Belarusi [Reports of the National Academy of Sciences of Belarus]. 2020;64(4):391–398.

Samarskii AA. Vvedenie v teoriiu raznostnykh skhem [Introduction to the theory of difference schemes]. M.: Nauka; 1971. 553 p.

Samarskii AA., Gulin AB.. Chislennye metody [Numerical methods]. M. : Nauka. Fizmatlit; 1989. 432 p.

Barabash OP., Polovinkina MV., Polovinkin IP., Zhadanova ML. On a difference scheme for the Growth-Propagation Equation. Lobachevskii Journal of Mathematics. 2023;44(3):989–992.

Ilina KP. An effective numerical method for solving the Fischer – Kolmogorov – Petrovsky – Piskunov Problem. Mezhdunarodnyi nauchno-issledovatelskii zhurnal. 2023;3(129).


Abstract views: 65

##submission.share##

Published

2025-03-30

How to Cite

Barabash, O. P. (2025). Numerical Method for Solving the Reaction-Diffusion Equation. Applied Mathematics & Physics, 57(1), 52-58. https://doi.org/10.52575/2687-0959-2025-57-1-52-58

Issue

Section

Physics. Mathematical modeling