Periodic on the Mean Differential Equations Systemsolutions Multiplicatively Perturbed by Gaussian Random Noise

Authors

  • Larisa Yu. Kabantsova Voronezh State University

DOI:

https://doi.org/10.52575/2687-0959-2025-57-1-11-26

Keywords:

Linear Differential Equations Systems, Variational Derivative, Mathematical Expectation, Periodic on Mean Solution, Second Moment Function

Abstract

The Cauchy problem for a first-order differential equations linear inhomogeneous system of with a random Gaussian perturbation and random inhomogeneity considered. Constructed an auxiliary deterministic differential equations linear system , containing ordinary and variational derivatives, with a deterministic initial condition. The deterministic Cauchy problem solution allows one to obtain a formula for the solution mathematical expectation to the original Cauchy problem. We found periodic on the mean system solutions existence conditions and an explicit formula for the periodic mathematical expectation. A similar technique is used to obtain a deterministic problem that allows finding an explicit formula for the second moment function solution to the original Cauchy problem. Second moment function solution periodicity conditions and an explicit formula for the periodic second moment function are also obtained.

Downloads

Download data is not yet available.

Author Biography

Larisa Yu. Kabantsova, Voronezh State University

Candidate of Physical and Mathematical Sciences, Assosiate Professor of the Department of System Analysis and Management, Voronezh State University,
Voronezh, Russia
E-mail: dlju@yandex.ru
ORCID: 0000-0003-4479-1062

References

Список литературы

Якубович В.А., Старжинский В.М. Линейные дифференциальные уравнения с переменными коэффициентами и их приложения. Москва: Наука; 1972. 720 с.

Хасьминский Р.З. Устойчивость систем дифференциальных уравнений при случайных возмущениях их параметров. Москва: Наука; 1969. 368 с.

Задорожний В.Г., Курина Г.А. Периодические в среднем решения линейного неоднородного дифференциального уравнения первого порядка со случайными коэффициентами. Дифференциальные уравнения. 2014;50(6):726-744. DOI: 10.1134/S0374064114060028

Задорожний В.Г., Курина Г.А. Периодические в среднем решения линейного дифференциального уравнения первого порядка. Доклады академии наук. 2013;450(5):505-510. DOI: 10.7868/S0869565213170076

Задорожний В.Г., Курина Г.А. Управление системой, обеспечивающее периодическое в среднем решение. Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии. 2018;3:23-32.

Kurina G., Zadorozhniy V. Mean periodic solutions of a inhomogeneous heat equation with random coeffi-cients. Discrete and Continuous Dynamical Systems - Series S. 2020;13(5):1543-1551. DOI: 10.3934/dcdss.2020087

Кабанцова Л.Ю. Периодические в среднем решения линейных систем дифференциальных уравнений со случайным возмущением. В сборнике: Вестник факультета прикладной математики, информатики и механики. 2024;73-89.

Задорожний В.Г. Методы вариационного анализа. Москва-Ижеск: РХД; 2006. 316 с.

Задорожний В.Г. Влияние мультипликативного случайного шума на устойчивость линейных систем. Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии. 2016;4:68-83.

Задорожний В.Г., Коновалова М.А. Мультипликативно возмущенное случайным шумом дифференциальное уравнение в банаховом пространстве. Современная математика. Фундаментальные направления. 2017;63(4):599-614. DOI: 10.22363/2413-3639-2017-63-4-599-614

Zadorozhniy V.G., Konovalova M.A. Differential equations in banach spaces multiplicatively perturbed by random noise. Journal of Mathematical Sciences. 2021;259(6):817-832. DOI: 10.1007/s10958-021-05664-0

References

Yakubovich VA, Starzhinskii VM. Lineinye differentsial’nye uravneniya s peremennymi koehffitsientami i ikh prilozheniya [Linear differential equations with variable coefficients and their applications]. Moscow: Nauka; 1972. 720 p.

Khas’minskii RZ. Ustoichivost’ sistem differentsial’nykh uravnenii pri sluchainykh vozmushcheniyakh ikh parametrov [Stability of systems of differential equations under random perturbations of their parameters]. Moscow: Nauka; 1969. 368 p.

Zadorozhniy VG, Kurina GA. Mean periodic solutions of a linear inhomogeneous first-order differential equation with random coefficients. Differential Equations. 2014;50(6):722-741. DOI: 10.1134/S0012266114060020 (In Russ.)

Zadorozhniy VG, Kurina GA. Mean-periodic solutions of a first-order linear differential equation. Doklady Mathematics. 2013;87(3):325-330. DOI: 10.1134/S1064562413030277 (In Russ.)

Zadorozhniy VG, Kurina GA. System control, providing mean periodic solution. Proceedings of Voronezh state university. Series: Systems analysis and information technologies. 2018;3:23-32. (In Russ.)

Kurina G, Zadorozhniy V. Mean periodic solutions of a inhomogeneous heat equation with random coeffi-cients. Discrete and Continuous Dynamical Systems - Series S. 2020;13(5):1543-1551. DOI: 10.3934/dcdss.2020087

Kabantsova LYu. Periodicheskie v srednem resheniya lineinykh sistem differentsial’nykh uravnenii so sluchai-nym vozmushcheniem [Periodic average solutions of linear systems of differential equations with random perturbation]. V sbornike: Vestnik fakul’teta prikladnoi matematiki, informatiki i mekhaniki. 2024;73-89.

Zadorozhnii VG. Metody variatsionnogo analiza [Methods of variational analysis]. Moscow-Izhevsk: RKHD; 2006. 316 p.

Zadorozhniy VG. He influence of the multiplicative random noise on the stability linear systems. Proceedings of Voronezh state university. Series: Systems analysis and information technologies. 2016;4:68-83. (In Russ.)

Zadorozhniy VG, Konovalova MA. Differential equation in a banach space multiplicatively perturbed by random noise. Contemporary mathematics. Fundamental directions. 2017;63(4):599-614. (In Russ.) DOI: 10.22363/2413-3639-2017-63-4-599-614

Zadorozhniy VG, Konovalova MA. Differential equations in banach spaces multiplicatively perturbed by random noise. Journal of Mathematical Sciences. 2021;259(6):817-832. DOI: 10.1007/s10958-021-05664-0


Abstract views: 25

##submission.share##

Published

2025-03-30

How to Cite

Kabantsova, L. Y. (2025). Periodic on the Mean Differential Equations Systemsolutions Multiplicatively Perturbed by Gaussian Random Noise. Applied Mathematics & Physics, 57(1), 11-26. https://doi.org/10.52575/2687-0959-2025-57-1-11-26

Issue

Section

Mathematics