Localized and Local Fractional Derivative of the Takagi Function
DOI:
https://doi.org/10.52575/2687-0959-2025-57-2-93-110Keywords:
Localized Fractional Derivative, Local Fractional Derivative, Takagi FunctionAbstract
In this paper it is proved that localized fractional derivatives of Riemann – Liouville type of order 0 < α < 1 are bounded from the Hölder space with exponent λ, 0 < λ ≤ 1 and logarithmic factor into the Hölder space with exponent λ − α, 0 < λ − α and logarithmic factor. Localized and local fractional derivatives, minimum and maximum points of the Takagi function are calculated. It is shown that the Takagi function belongs to the Hölder space with exponent one and logarithmic factor.
Downloads
References
Список литературы
Grinko A.P. Localized derivatives in spaces of functions representable by localized fractional integrals. Integral Transforms and Special Functions. 2019;30(10):817-832.
Grinko A.P. Generalized Abel type integral equations with localized fractional integrals and derivatives. Integral Transforms and Special Functions. 2018;29(6):489-504.
Гринько А.П. Локализованные и локальные производные дробного порядка функций с заданным модулем непрерывности. Прикладная математика & Физика. 2024;56(4):296-313.
Takagi T. A simple example of a continuous function without derivative. Proc. Phys. Math. Soc. Japan. 1903;1:176-177.
Hata M., Yamaguti M. Takagi function and its generalization Japan J. Appl. Math. 1984;1:183-199.
Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Мн.; Наука и Техника; 1987. 687c.
Shidfar A., Sabetfakhri K. On the Continuity of Van Der Waerden’s Function in the Hölder Sense. Amer. Math. Monthly. 1986;93(5):375-376.
Шейпак И.А., О показателях Гёльдера самоподобных функций. Функциональный анализ и его приложения 2019;53(1):67–78.
Grinko A.P. Localized fractional derivative of Djrbashian-Caputo type. Integral Transforms and Special Functions. 2021;32(12);1002-1018.
Grinko AP. Composition properties of operators of local fractional integro-differentiation calculated in various points. Trudy institute of mathemat. NAN Belarus. Minsk;2009;17(1):41-50. (In Russian)
Grinko АP. Compositions of localized fractional derivatives and integrals of a different degree of localization. Integral Transforms and Special Functions. 2022;33(8):623-636.
Мусхелишвили Н.И. Сингулярные интегральные уравнения. - М.: Наука; 1968. 511 с.
References
Grinko AP. Localized derivatives in spaces of functions representable by localized fractional integrals. Integral Transforms and Special Functions. 2019;30(10):817-832.
Grinko AP. Generalized Abel type integral equations with localized fractional integrals and derivatives. Integral Transforms and Special Functions. 2018;29(6):489-504.
Grin’ko AP. Localized and local derivatives of fractional order of functions with a given modulus of continuity. Applied Mathematics & Physics. 2024;56(4):296-313.
Takagi T. A simple example of a continuous function without derivative. Proc. Phys. Math. Soc. Japan. 1903;1:176-177.
Hata M., Yamaguti M. Takagi function and its generalization Japan J. Appl. Math. 1984;1:183-199.
Samko SG., Kilbas AA., Marichev OI. Integrals and derivatives of fractional order and some of their applications. Mn.; Science and Technology; 1987. 687 p.
Shidfar A., Sabetfakhri K. On the Continuity of Van Der Waerden’s Function in the Hölder Sense. Amer. Math. Monthly. 1986;93(5):375-376.
Sheipak IA., On H¥older exponents of self-similar functions Functional Analysis and Its Applications 2019;53(1):67–78.
Grinko AP. Localized fractional derivative of Djrbashian-Caputo type. Integral Transforms and Special Functions. 2021;32(12);1002-1018.
Grinko AP. Composition properties of operators of local fractional integro-differentiation calculated in various points. Trudy institute of mathemat. NAN Belarus. Minsk;2009;17(1):41-50. (In Russ.)
Grinko АP. Compositions of localized fractional derivatives and integrals of a different degree of localization. Integral Transforms and Special Functions. 2022;33(8):623-636.
Muskhelishvili NI. Singular integral equations. - M.: Nauka; 1968. 511 p. (In Russ.)
Abstract views: 65
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2025 Applied Mathematics & Physics

This work is licensed under a Creative Commons Attribution 4.0 International License.