On a Problem With Nonlocal Integral Conditions of the First Kind for a Second-order Equation
DOI:
https://doi.org/10.52575/2687-0959-2025-57-2-82-92Keywords:
Nonlocal Integral Conditions of the First Kind, Existence of a Solution, Completely Continuous OperatorAbstract
In this article we consider a nonlocal problem for a second-order differential equation in the characteristic domain with integral conditions of the first kind. By introducing a new unknown function we reduce the original problem to the equivalent one with nonlocal conditions containing the unit as kernels. Next, we were able to prove the uniqueness of the solution to the problem and perform the transition to the operator equation. At this stage we justify the complete continuity of the obtained operator. From this, and also due to the previously proven uniqueness of the solution, the solvability of the operator equation follows. Since the original problem is equivalent to an operator equation whose solution exists, then the solution to the original problem also exists. As a result of the study, we found the conditions under which exists a solution to original problem. We also formulated and proved the corresponding theorem on the existence and uniqueness of the solution to the problem under consideration.
Downloads
References
Список литературы
Cannon JR. The Solution of the Heat Equation Subject to the Specification of Energy. Quarterly of Applied Mathematics. 1963;21(2):155–160. https://doi.org/10.1090/QAM/160437
Камынин Л.И. Об одной краевой задаче теории теплопроводности с неклассическими граничными условиями. Журнал вычислительной математики и математической физики. 1964;4(6):1006–1024.
Ионкин Н.И. Решение одной краевой задачи теории теплопроводности с неклассическим краевым условием. Дифференциальные уравнения. 1977;13(2):294–304.
Иванчов Н.И. Краевые задачи для параболического уравнения с интегральными условиями. Дифференциальные уравнения. 2004;40(4):547–564.
Cannon JR., van der Hoek J. The Classical Solution of the One-Dimensional Two-Phase Stefan Problem with Energy Specification. Annali di Matematica Pura ed Applicata. 1982;130(1):385–398. https://doi.org/10.1007/BF01761503
Cannon JR., Lin Y. Determination of a parameter p(t) in some quasi-linear parabolic differential equations. Inverse Problems. 1988;4(1):35–45. https://doi.org/10.1088/0266-5611/4/1/006
Камынин В.Л. Обратная задача определения младшего коэффициента в параболическом уравнении при условии интегрального наблюдения. Математические заметки. 2013;94(2):207–217. https://doi.org/10.4213/mzm9370
Пулькина Л.С. Задачи с неклассическими условиями для гиперболических уравнений. Самара: Издательство "Самарский Университет"; 2012. 194 c.
Beilin SA. Existence of Solutions for One-Dimensional Wave Equations with Nonlocal Conditions. Electronic Journal of Differential Equations. 2001;2001(76):1–8.
Pulkina LS. Solution to Nonlocal Problems of Pseudohyperbolic Equations. Electronic Journal of Differential Equations. 2014;2014(116):1–9.
Ладыженская О.А. Краевые задачи математической физики. М.:Наука; 1973. 408 с.
Кожанов А.И., Пулькина Л.С. О разрешимости краевых задач с нелокальным граничным условием интегрального вида для многомерных гиперболических уравнений. Дифференциальные уравнения. 2006;42(9):1166–1179.
Пулькина Л.С. Краевые задачи для гиперболического уравнения с нелокальными условиями I и II рода. Известия высших учебных заведений. Математика 2012;1(4):74–83.
Нахушева З.А. Об одной нелокальной задаче для уравнения в частных производных. Дифференциальные уравнения. 1986;22(1):171–174.
Пулькина Л.С. О разрешимости в L2 нелокальной задачи с интегральными условиями для гиперболического уравнения. Дифференциальные уравнения. 2000;36(2):279–280.
References
Cannon JR. The Solution of the Heat Equation Subject to the Specification of Energy. Quarterly of Applied Mathematics. 1963;21(2):155–160. https://doi.org/10.1090/QAM/160437
Kamynin LI. Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviyami [On a boundary value problem of heat conduction theory with non-classical boundary conditions]. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki [USSR Computational Mathematics and Mathematical Physics]. 1964;4(6):33–59. https://doi.org/10.1016/0041-5553(64)90080-1
Ionkin NI. Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem. Differentsial’nye uravneniya [Differential Equations]. 1977;13(2):294–304.
Ivanchov NI. Kraevye zadachi dlya parabolicheskogo uravneniya s integral’nymi usloviyami [Boundary Value Problems for a Parabolic Equation with Integral Conditions]. Differentsial’nye uravneniya [Differential Equations]. 2004;40(4):591–609. https://doi.org/10.1023/B:DIEQ.0000035796.56467.44
Cannon JR., van der Hoek J. The Classical Solution of the One-Dimensional Two-Phase Stefan Problem with Energy Specification. Annali di Matematica Pura ed Applicata. 1982;130(1):385–398. https://doi.org/10.1007/BF01761503
Cannon JR., Lin Y. Determination of a parameter p(t) in some quasi-linear parabolic differential equations. Inverse Problems. 1988;4(1):35–45. https://doi.org/10.1088/0266-5611/4/1/006
Kamynin VL. Obratnaya zadacha opredeleniya mladshego koehffitsienta v parabolicheskom uravnenii pri uslovii integral’nogo nablyudeniya [The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation]. Matematicheskie zametki [Mathematical Notes]. 2013;94(2):205–213. https://doi.org/10.1134/S00014-34613070201
Pul’kina LS. Zadachi s neklassicheskimi usloviyami dlya giperbolicheskikh uravnenii. Samara: Izdatel’stvo "Samarskii Universitet"; 2012. 194 p.
Beilin SA. Existence of Solutions for One-Dimensional Wave Equations with Nonlocal Conditions. Electronic Journal of Differential Equations. 2001;2001(76):1–8.
Pulkina LS. Solution to Nonlocal Problems of Pseudohyperbolic Equations. Electronic Journal of Differential Equations. 2014;2014(116):1–9.
Ladyzhenskaya OA. Kraevye zadachi matematicheskoi fiziki. Moscow:Nauka; 1973. 408 p.
Kozhanov AI., Pul’kina LS. O razreshimosti kraevykh zadach s nelokal’nym granichnymusloviem integral’nogo vida dlya mnogomernykh giperbolicheskikh uravnenii [On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations]. Differentsial’nye uravneniya [Differential Equations]. 2006;42(9):1233–1246. https://doi.org/10.1134/S0012266106090023
Pul’kina LS. Kraevye zadachi dlya giperbolicheskogo uravneniya s nelokal’nymi usloviyami I i II roda [Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind]. Izvestiya vysshikh uchebnykh zavedenii. Matematika [Russian Mathematics] 2012;56(4):62–69. https://doi.org/10.3103/S1066369X12040081
Nakhusheva ZA. Ob odnoi nelokal’noi zadache dlya uravneniya v chastnykh proizvodnykh. Differentsial’nye uravneniya [Differential Equations]. 1986;22(1):171–174.
Pul’kina LS. O razreshimosti v L2 nelokal’noi zadachi s integral’nymi usloviyami dlya giperbolicheskogo uravneniya [The L2 solvability of a nonlocal problem with integral conditions for a hyperbolic equation]. Differentsial’nye uravneniya [Differential Equations]. 2000;36(2):316–318. https://doi.org/10.1007/BF02754219
Abstract views: 51
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2025 Applied Mathematics & Physics

This work is licensed under a Creative Commons Attribution 4.0 International License.