Сauchy – Euler Equation: Integer and Fractional Orders

Authors

  • Ahmat A. Mahamoud Belgorod National Research University
  • Shishkina E.L. Voronezh State University; Kadyrov Chechen State University

DOI:

https://doi.org/10.52575/2687-0959-2025-57-3-172-185

Keywords:

Cauchy – Euler Equation, Cauchy – Euler Differential Operator, Stirling Numbers of the Second Kind, Stirling Functions of the Second Kind, Hadamard Fractional Derivatives, Mellin Transform

Abstract

In this paper, we study the Cauchy-Euler equations of both integer and fractional orders. We analyze and utilize the fact that the operators involved in these equations are closely related to the Stirling numbers of the second kind and their fractional generalizations. We propose a finite-difference interpretation of the operator (x d/dx)n. Additionally, we consider the application of the Mellin transform for solving inhomogeneous Cauchy – Euler equations of both integer and fractional orders.


Acknowledgements
The work of the second author was carried out with the support of the Ministry of Education and Science of the Russian Federation on a state assignment (project FEGS-2023-0003).

Downloads

Download data is not yet available.

Author Biographies

Ahmat A. Mahamoud, Belgorod National Research University

Graduate Student, Belgorod National Research University,
Belgorod, Russia
E-mail: 1269765@bsuedu.ru
ORCID: 0009-0007-4930-934X

Shishkina E.L., Voronezh State University; Kadyrov Chechen State University

Doctor of Physical and Mathematical Sciences, Assosiate Professor, Professor, Voronezh State University,
Voronezh, Russia
Researcher, Kadyrov Chechen State University,
Grozny, Russia
E-mail: ilina_dico@mail.ru
ORCID: 0000-0003-4083-1207

References

Список литературы

Ross C.C. Differential Equations. An Introduction with Mathematica. 2th ed. New York: Springer; 2004. 431 p.

Boyce W.E., DiPrima R.C. Elementary Differential Equations and Boundary Value Problem. 8th ed. New York: Wiley; 2005. 790 p.

Sadykov T. Graceful bases in solution spaces of differential and difference equations. Journal of Symbolic Computation. 2025;127:1–13. DOI: 10.1016/j.jsc.2024.10235

Takahasi S.E., Oka H., Miura T., Takagi H. A Cauchy-Euler Type Factorization of Operators. Tokyo Journal of Mathematics. 2008;31(2):489–493.

Berman G., Fryer K.D. Introduction to Combinatorics. New York: Academic Press; 2014. 314 p.

Деза Е.И. Специальные комбинаторные числа: От чисел Стирлинга до чисел Моцкина: всё о двенадцати известных числовых множествах комбинаторной природы (история, классические свойства, примеры и задачи). М.: Ленанд; 2018. 504 с.

Butzer P.L., Hauss M., Schmidt M. Factorial functions and Stirling numbers of fractional orders. Results. Math. 1989;16:16–48. DOI: 10.1007/BF03322642

Butzer P.L., Kilbas A.A., Trujillo J.J. Stirling functions of the second kind in the setting of difference and fractional calculus. Numer. Funct. Anal. Optim. 2003;24(7–8):673–711. DOI: 10.1081/nfa-120026366

Schwatt I.J. An Introduction to the Operations with Series. New York: Chelsea Publishing Co; 1962. 328 p.

Knopf P.M. The operator (x d/dx)n and its applications to series. Math. Mag. 2003;76(5):364–371. DOI: 10.1080/0025570X.2003.11953210

Gonz´alez G.J.R., Plaza Galvez L.F. Soluci´on de la ecuaci´on de Cauchy-Euler por medio de la transformada de Mellin. Scientia Et Technica. 2009;2(42):300–303. DOI: 10.22517/23447214.2651

Brychkov Y., Marichev O., Savischenko N. Handbook of Mellin Transforms. New York: Chapman and Hall/CRC; 2018. 609 p.

Balakrishnan A.V. An operational calculus for infinitesimal generators of semigroups. Trans. Amer. Math. Soc. 1959;91:330–353. DOI: 10.2307/1993125

Westphal U. Ein Kalk¨ul f¨ur gebrochene Potenzen infinitesimaler Erzeuger von Halbgruppen und Gruppen von Operatoren, Teil I: Halbgruppenerzeuger, Teil II : Gruppenerzeuger’. Gompositio Math. 1970;22:67–103, 104–136.

Yosida K. Functional Analysis, 6 th ed. Berlin: Springer-Verlag; 1980. 504 p.

Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка. Минск: Наука и техника; 1987. 688 с.

Ahmad B., Alsaedi A., Ntouyas S.K., Tariboon J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. New York: Springer; 2017. 427 p.

Garra R., Orsingher E., Polito F. A Note on Hadamard Fractional Differential Equations with Varying Coefficients and Their Applications in Probability. Mathematics. 2018;6(1):1–10. DOI: 10.3390/math6010004

Butzer P.L., Kilbas A.A., Trujillo J.J. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002;269(1):1–27. DOI: 10.1016/S0022-247X(02)00001-X

Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Switzerland: Elsevier Science; 2006. 540 p.

References

Ross CC. Differential Equations. An Introduction with Mathematica. 2th ed. New York: Springer; 2004. 431 p.

Boyce WE, DiPrima RC. Elementary Differential Equations and Boundary Value Problem. 8th ed. New York: Wiley; 2005. 790 p.

Sadykov T. Graceful bases in solution spaces of differential and difference equations. Journal of Symbolic Computation. 2025;127:1–13. DOI: 10.1016/j.jsc.2024.10235

Takahasi SE, Oka H, Miura T, Takagi H. A Cauchy-Euler Type Factorization of Operators. Tokyo Journal of Mathematics. 2008;31(2):489–493.

Berman G, Fryer KD. Introduction to Combinatorics. New York: Academic Press; 2014. 314 p.

Deza EI. Special combinatorial numbers: From Stirling numbers to Motzkin numbers: everything about the twelve well-known sets of numbers of combinatorial nature (history, classical properties, examples, and problems). Moscow: Lenand; 2018. 504 p. (In Russ.)

Butzer PL, Hauss M, Schmidt M. Factorial functions and Stirling numbers of fractional orders. Results. Math. 1989;16:16–48. DOI: 10.1007/BF03322642

Butzer PL, Kilbas AA, Trujillo JJ. Stirling functions of the second kind in the setting of difference and fractional calculus. Numer. Funct. Anal. Optim. 2003;24(7–8):673–711. DOI: 10.1081/nfa-120026366

Schwatt IJ. An Introduction to the Operations with Series. New York: Chelsea Publishing Co; 1962. 328 p.

Knopf PM. The operator (x d/dx)n and its applications to series. Math. Mag. 2003;76(5):364–371. DOI: 10.1080/0025570X.2003.11953210

Gonz´alez GJR, Plaza Galvez LF. Soluci´on de la ecuaci´on de Cauchy-Euler por medio de la transformada de Mellin. Scientia Et Technica. 2009;2(42):300–303. DOI: 10.22517/23447214.2651

Brychkov Y, Marichev O, Savischenko N. Handbook of Mellin Transforms. New York: Chapman and Hall/CRC; 2018. 609 p.

Balakrishnan AV. An operational calculus for infinitesimal generators of semigroups. Trans. Amer. Math. Soc. 1959;91:330–353. DOI: 10.2307/1993125

Westphal U. Ein Kalk¨ul f¨ur gebrochene Potenzen infinitesimaler Erzeuger von Halbgruppen und Gruppen von Operatoren, Teil I: Halbgruppenerzeuger, Teil II : Gruppenerzeuger’. Gompositio Math. 1970;22:67–103, 104–136.

Yosida K. Functional Analysis, 6 th ed. Berlin: Springer-Verlag; 1980. 504 p.

Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives: Theory and Applications. Yverdon: Gordon and Breach; 1993. 1016 p.

Ahmad B, Alsaedi A, Ntouyas SK, Tariboon J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. New York: Springer; 2017. 427 p.

Garra R, Orsingher E, Polito F. A Note on Hadamard Fractional Differential Equations with Varying Coefficients and Their Applications in Probability. Mathematics. 2018;6(1):1–10. DOI: 10.3390/math6010004

Butzer PL, Kilbas AA, Trujillo JJ. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002;269(1):1–27. DOI: 10.1016/S0022-247X(02)00001-X

Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Switzerland: Elsevier Science; 2006. 540 p.


Abstract views: 13

##submission.share##

Published

2025-09-30

How to Cite

Mahamoud, A. A., & Shishkina E.L. (2025). Сauchy – Euler Equation: Integer and Fractional Orders. Applied Mathematics & Physics, 57(3), 172-185. https://doi.org/10.52575/2687-0959-2025-57-3-172-185

Issue

Section

Mathematics

Most read articles by the same author(s)