The Obstacle Problem on the Stratified Set

Authors

  • Sofia N. Oshchepkova Voronezh State University of Engineering Technologies
  • Oleg M. Penkin Samara National Research University

DOI:

https://doi.org/10.52575/2687-0959-2025-57-2-111-116

Keywords:

Stratified Set, Laplacian, Variational Problem, Obstacle Problem

Abstract

In this paper we consider an analog of the obstacle problem for a mechanical system composed of strings and membranes; as well as a generalization of this problem to multidimensional case. Small displacements of this system under external small loads may be modeled as an elliptic equation of second order (outside of a contact zone) on the stratified set, equipped with Dirichlet’s condition on the boundary. The main result of this job is a proof of solvability of a corresponding boundary value problem in sobolev-type space. The main assumption is so-called firmness of the stratified set.

Downloads

Download data is not yet available.

Author Biographies

Sofia N. Oshchepkova, Voronezh State University of Engineering Technologies

Candidate of Physical and Mathematical Sciences, Assosiate Professor of the Department of Higher Mathematics, Voronezh State University of Engineering Technologies,
Voronezh, Russia
E-mail: osonia@mail.ru
ORCID: 0000-0001-9555-541X

Oleg M. Penkin, Samara National Research University

Doctor of Physical and Mathematical Sciences, Professor, Professor of the Department of Mathematical
Modelling, Voronezh State University,
Voronezh, Russia
E-mail: o.m.penkin@gmail.com
ORCID: 0000-0001-9547-7597

References

Список литературы

Pham F. Introduction a l’´etude topologique des singularit´es de Landau. Paris: Gauthier-Villars ´Editeur; 1967. 142 p.

Покорный Ю.В., Пенкин О.М., Прядиев В.Л., Боровских А.В., Лазарев К.П., Шабров С.А. Дифференциальные уравнения на геометрических графах. М.: Физматлит; 2005. 272 с.

Даирбеков Н.С., Пенкин О.М., Сарыбекова Л.О. Аналог неравенства Соболева на стратифицированном множестве. Алгебра и анализ. 2018;30(5):149-158. DOI: https://doi.org/10.1090/spmj/1573

Даирбеков Н.С., Пенкин О.М., Сарыбекова Л.О. Неравенство Пуанкаре и p-связность стратифицированного множества. Сибирский математический журнал. 2018;59(6):1291-1302. DOI: https://doi.org/10.17377/smzh.2018.59.606

Фридман А. Вариационные принципы и задачи со свободными границами. М.: Наука; 1990. 536 с.

Gavrilov A., Nicaise S., Penkin O. Poincare’s inequality on stratified sets and applications. Progress in Nonlinear Differential Equations and Their Applications. 2003;55:195-213.

Ali Mehmeti F. Nonlinear waves in networks. Mathematical Research, 80, Academie Verlag, Berlin, 1994. 171 p.

Below J. von. A characteristic equation associated to an eigenvalue problem on c2-networks. Linear algebra and appl. 1985, 71, 309-325.

Nicaise S. Polygonal interface problems. Peter Lang Verlag, 1993. 250 p.

References

Pham F. Introduction a l’´etude topologique des singularit´es de Landau. Paris: Gauthier-Villars ´Editeur; 1967. 142 p.

Pokornyi YV, Penkin OM, Pryadiev VL, Borovskikh AV, Lazarev KP, Shabrov SA. Differentsial’nye uravneniya na geometricheskikh grafakh [Differential equations on geometric graphes]. Moscow: Fizmatlit; 2005. 272 p. (In Russ.)

Dairbekov NS, Penkin OM, Sarybekova LO. An analog of the Sobolev inequality on a stratified set. St. Petersburg Mathematical Journal, 2019;30:869–875. DOI: https://doi.org/10.1090/spmj/1573

Dairbekov NS, Penkin OM, Sarybekova LO. The Poincar´e inequality and p -connectedness of a stratified set Siberian Mathematical Journal. 2018;59(6):1024-1033. DOI: https://doi.org/10.1134/S003744661806006X

Friedman A. Variational principles and free-boundary problems. Wiley; 1982. 710 p. (Friedman A. Variational principles and free-boundary problems. Moscow: Nauka; 1990. 536 с.)

Gavrilov A, Nicaise S, Penkin O. Poincare’s inequality on stratified sets and applications. Progress in Nonlinear Differential Equations and Their Applications. 2003;55:195-213.

Ali Mehmeti F. Nonlinear waves in networks. Mathematical Research, 80, Academie Verlag, Berlin, 1994. 171 p.

Below J. von. A characteristic equation associated to an eigenvalue problem on c2-networks. Linear algebra and appl. 1985, 71, 309-325.

Nicaise S. Polygonal interface problems. Peter Lang Verlag, 1993. 250 p.


Abstract views: 62

##submission.share##

Published

2025-06-30

How to Cite

Oshchepkova, S. N., & Penkin, O. M. (2025). The Obstacle Problem on the Stratified Set. Applied Mathematics & Physics, 57(2), 111-116. https://doi.org/10.52575/2687-0959-2025-57-2-111-116

Issue

Section

Mathematics

Most read articles by the same author(s)