Existence of Solutions to Anisotropic Elliptic Inequalities with Variable Exponents in Unbounded Domains
DOI:
https://doi.org/10.52575/2687-0959-2025-57-3-224-234Keywords:
Anisotropic Elliptic Inequality, Variable Nonlinearity Exponents, Sobolev – Orlicz Spaces with Variable Exponents, Existence Theorem, Unbounded DomainAbstract
The study addresses the problem of the existence of generalized solutions to anisotropic elliptic variational inequalities with variable nonlinearity exponents in unbounded domains. The primary objective is to establish solvability conditions for a class of inequalities containing lower-order terms with non-polynomial growth, thereby extending known results limited to isotropic cases or polynomial growth. The methodology is based on the application of the theory of pseudomonotone operators, functional analysis, and properties of anisotropic Lebesgue and Sobolev-Orlicz spaces with variable exponents. An existence theorem is proven for solutions to second-order anisotropic variational inequalities for operators that include higher-order terms with variable exponent power growth and lower-order terms with non-polynomial growth. The results are applicable to the qualitative theory of boundary value problems for quasilinear elliptic equations and can be used for the further development of the theory of inequalities in unbounded domains.
Downloads
References
Список литературы
Browder F.E. Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proceedings of the National Academy of Sciences. 1977;74(7):2659–2661. DOI: 10.1073/pnas.74.7.2659
Кожевникова Л.М., Камалетдинов А.Ш. Существование решений анизотропных эллиптических уравнений с переменными показателями нелинейностей в неограниченных областях. Вестник Волгоградского государственного университета. Серия 1: Математика. Физика. 2016;5(36):29–41. DOI: 10.15688/jvolsu1.2016.5.4
Кожевникова Л.М., Камалетдинов А.Ш. Существование решений анизотропных эллиптических уравнений с переменными показателями нелинейностей в R
Abstract views: 10
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2025 Applied Mathematics & Physics

This work is licensed under a Creative Commons Attribution 4.0 International License.