ABOUT CHANGE IN THE STABILITY CHARACTER OF THE TRIVIAL SOLUTION AT THE TRANSITION FROM A MODEL WITH CONCENTRATED PARAMETERS TO A MODEL WITH DISTRIBUTED PARAMETERS

Authors

DOI:

https://doi.org/10.52575/2687-0959-2020-52-4-255–261

Keywords:

model with lumped parameters, model with distributed parameters, diffusion models, stationary solution, stability.

Abstract

We consider the question of refining the stability conditions for the trivial stationary solution for replacing the
lumped model with a distributed model by adding terms, simulating diffusion processes. In some cases, a trivial solution that
is unstable in models without diffusion terms turns out to be stable in models with diffusion terms.

Downloads

Download data is not yet available.

References

Ладыженская О. А. 1973. Краевые задачи математической физики. Москва, Наука, 408.

Мешков В. З., Половинкин И. П., Семенов М. Е. 2002. Об устойчивости стационарного решения уравнения Хотеллинга. Обозрение прикладной и промышленной математики, 9(1): 226–227.

Михайлов В. П. 1976. Дифференциальные уравнения в частных производных. Москва, Наука, 392.

Friedrichs K. O. 1973. Spectral Theory of Operators in Hilbert Space. New York. Heidelberg, Berlin, Springer-Verlag, 244.

Gilbarg D. and Trudinger N. S. 2001. Elliptic Partial Differential Equations of Second Order. New York. Heidelberg, Berlin, Springer-Verlag, 531.

Gogoleva T. N., Shchepina I. N., Polovinkina M. V. and Rabeeakh S. A. 2019. On stability of a stationary solution to the Hotelling migration equation. IOP Conf. Series: Journal of Physics: Conf. Series 1203 (2019) 012041 doi:10.1088/1742-6596/1203/1/012041

Kermack W. O., McKendrick A. G. 1927. A contribution to the mathematical theory of epidemics. Proc. R. Soc. London, A 1927, 115: 700–721.

Rektorys K. 2012. Variational Methods in Mathematics, Science and Engineering. Springer Science & Business Media, 571.


Abstract views: 294

##submission.share##

Published

2020-12-24 — Updated on 2020-12-24

Versions

How to Cite

Polovinkina, M. V., & Polovinkin, I. P. (2020). ABOUT CHANGE IN THE STABILITY CHARACTER OF THE TRIVIAL SOLUTION AT THE TRANSITION FROM A MODEL WITH CONCENTRATED PARAMETERS TO A MODEL WITH DISTRIBUTED PARAMETERS. Applied Mathematics & Physics, 52(4), 255–261. https://doi.org/10.52575/2687-0959-2020-52-4-255–261

Issue

Section

Mathematics