Влияние ориентации монокристаллических игл NiSb на электропроводность монокристаллов композита (InSb)98:2 - (NiSb)1:8
DOI:
https://doi.org/10.52575/2687-0959-2024-56-4-314-319Ключевые слова:
InSb-NiSb, монокристалл, прыжковая проводимость, электрические свойстваАннотация
Целью работы является проведение исследования электропроводности композитных монокристаллов (InSb)98.2 – (NiSb)1.8. Модифицированным методом Бриджмена были получены монокристаллы композита эвтектической системы (InSb)98.2 – (NiSb)1.8. Используя сканирующий электронный микроскоп JSM-6610LV (Jeol), был определен состав и однородности распределения элементов методом энергодисперсионной рентгеновской спектроскопии. Определены интервалы прыжковой проводимости с переменной длинной прыжка типа Эфроса – Шкловского (60 К – 126.1 К) и прыжковой проводимости по ближайшим соседям (88 К – 115 К) у образцов с разной ориентацией игольчатых включений NiSb.
Скачивания
Библиографические ссылки
Razeghi M. Overview of antimonide based III-V semiconductor epitaxial layers and their applications at the center for quantum devices. The European Physical Journal-Applied Physics. 2003;23(3):149-205. DOI:10.1051/epjap:2003056
Weiss H. Structure and Application of Galvanomagnetic Devices: International Series of Monographs on Semiconductors. New York; 2014. 362 p.
Su M, Li J, He K, Fu K. NiSb/nitrogen-doped carbon derived from Ni-based framework as advanced anode for lithium-ion batteries. Journal of Colloid and Interface Science. 2023;629(48):83-91.
Zhao J, Li N, Cheng Y. All-dielectric InSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion. Optics Communications. 2023;536:129372.
Luo F, Wang J, Zhu C, He X, Zhang S, Wang J, Liu H, Sun Z. 18-Electron half-Heusler compound Ti 0.75 NiSb with intrinsic Ti vacancies as a promising thermoelectric material. Journal of Materials Chemistry A. 2022;10(17):9655-9669. DOI: 10.1039/d2ta00461e
Zheng XM, You JH, Fan JJ, Tu GP, Rong WQ, Li WJ, Wang YX, Tao S, Zhang PY, Zhang SY, Shen SY, Li JT, Huang L, Su S. Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy. 2020;77(5):105123. DOI:10.1016/j.nanoen.2020.105123
Friedrich J, Muller G. Erlangen - An Important Center of Crystal Growth and Epitaxy: Major Scientific Results and Technological Solutions of the Last Four Decades. Crystal Research and Technology. 2020;55(2): 1900053. DOI:10.1002/crat.201900053
Pendharkar M, Zhang B, Wu H, Zarassi A, Zhang P, Dempsey C, Lee J, Harrington S, Badawy G, Gazibegovic S, Veld R, Rossi M, Jung J, Chen A, Verheijen M, Hocevar M, Bakkers E, Palmstrom CJ, Frolov SM. Parity-preserving and magnetic field–resilient superconductivity in InSb nanowires with Sn shells. Science. 2021;372(6541):508-511. DOI:10.1126/science.aba5211
Jesenovec J, Zawilski KT, Alison P, Meschter S, Saha SK, Sepelak AJ, Schunemann PG. Controlling Morphology of NiSb Needles in InSb through Low Temperature Gradient Horizontal Gradient Freeze. Journal of Crystal Growth. 2023;626:127440. DOI:10.1016/j.jcrysgro.2023.127440
Mamedov IKh, Arasly D, Khalilova A, Rahimov RN. Anisotropic electrical properties of a eutectic InSb + MnSb composite. Inorganic Materials. 2016;52(4):423-428. DOI:10.1134/S0020168516040105
Ivanov O, Zakhvalinskii V, Pilyuk E, Kochura A, Kuzmenko A, Ril A. Resistivity superconducting transition in single-crystalline Cd0.95Ni0.05Sb system consisting of non-superconducting CdSb and NiSb phases. Chinese Journal of Physics. 2021;72(2):223-228. DOI:10.1016/j.cjph.2021.05.004
Zakhvalinskii VS, Borisenko AV, Nikulicheva TB, Kochura AV, Htet AZ, Pilyuk EA. Properties of solid solution (Cd0.69Zn0.31)3As2. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2022;15(3.1): 22. DOI 10.18721/JPM.153.103
Laiho R, Lashkul AV, Lisunov KG, Lahderanta E, Shakhov MA, Zakhvalinskii VS. Hopping conductivity of ni-doped p-CdSb. Journal of Physics: Condensed Matter. 2008;20(29):295204-295214. DOI:10.1088/0953-8984/20/29/295204
Tran TT, Wong-Leung J, Smillie LA, Hallen A. High hole mobility and non-localized states in amorphous germanium. APL Materials. 2023;11(4):041115. DOI:10.1063/5.0146424
Ravich YuI, Nemov SA. Hopping conduction via strongly localized impurity states of indium in PbTe and its solid solutions. Semiconductors. 2002;36(1):3-23.
Просмотров аннотации: 17
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2024 Прикладная математика & Физика
![Лицензия Creative Commons](http://i.creativecommons.org/l/by/4.0/88x31.png)
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.