Особенности электрических свойств композитного материала системы Ca2SO4-H3PO4-C
DOI:
https://doi.org/10.52575/2687-0959-2025-57-4-290-297Ключевые слова:
сульфат кальция, твердый электролит, метод импедансной спектроскопии, ионная проводимостьАннотация
В работе представлены результаты исследования особенностей электрофизических характеристик композитного микроструктурно-неоднородного материала системы сульфат кальция – фосфорная кислота – углерод. Изучены электропроводность и механизм проводимости образцов материала при комнатной температуре. Электропроводность материала оказалась достаточно большой и типичной для твердых электролитов.
Скачивания
Библиографические ссылки
Список литературы
Пехотиков В.А., Смелков Г.И., Назаров А.А., Грузинова О.И. Анализ нормативных требований в области обеспечения пожарной безопасности литий-ионных аккумуляторных батарей. Актуальные проблемы пожарной безопасности. 2020:487–493.
Lei C., Simpson M.F., Virkar A.V. Investigation of ion and electron conduction in the mixed ionic-electronic conductor-La-Sr-Co-Fe-oxide (LSCF) using alternating current (AC) and direct current (DC) techniques. Journal of the Electrochemical Society. 2022;169:014506.
Ghosh S., Majhi J., Sharma S., Priya K., Bandyopadhyay A. A review on the development of electron and ion conductive polymer hydrogels and their composites for flexible and smart supercapacitors. Journal of Energy Storage. 2023;74(B):109423.
Liu H.M., Saikia D., Wu C.G., Fang J., Kao H.M. Solid polymer electrolytes based on coupling of polyetheramine and organosilane for applications in electrochromic devices. Solid State Ionics. 2017;303:144–153.
Уваров Н.Ф., Пономарёва В.Г., Лаврова Г.В. Композиционные твердые электролиты Электрохимия. 2010;46;№7:772–784.
Гусейнов Р.М., Гаджиев С.М. Методы активации твердых электролитов. Известия высших учебных заведений. Серия: Химия и химическая технология. 2009;52;№11:3–6.
Wu Y., Ao X., Wang Y., Liu Y., Zhao S., Yang X., Zhou N. Innovative doping strategies for Li2ZrCl 6 solid electrolytes: A first-principles approach. Journal of Energy Storage. 2025;107:115017.
Kosir J., Mousavihashemi S., Suominen M., Kobets A., Wilson B.P., Rautama E.-L., Kallio T. Supervalent doping and its effect on the thermal, structural and electrochemical properties of Li7La3Zr2O12 solid electrolytes. Advanced Materials. 2024;5:5260–5274.
Ali A.A.A., Acharya S., Bhongale K., Shirbhate S., Kulkarni S., Joshi S. Investigation of Sr doping effect on oxygen ion de-localization in Gd2Ti2O7 pyrochlore system and its influence on charge relaxation dynamics and ionic conductivity: as electrolyte for IT-SOFCs. Ionics. 2024;30:7293–7310.
Gupta M., Shirbhate S., Ojha P., Acharya S. Processing and conductivity behavior of La, Sm, Fe singly and doubly doped ceria: As electrolytes for IT-SOFCs. Solid State Ionics. 2018;320:199–209.
Nguyen M.H., Park S. Synergetic effect of Li-ion concentration and triple doping on ionic conductivity of Li7La3Zr2O12 solid electrolyte. Nanomaterials. 2022;12:2946.
Yang T., Li Y., Wu W., Cao Z., He W., Gao Y., Liu J., Li G. The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic. Ceramics International. 2018;44:1538.
Dashjav E., Ma Q., Xu Q., Tsai C.-L., Giarola M., Mariotto G., Tietz F. The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates. Solid State Ionics. 2018;321:83–90.
Ivanov O.N., Trusova Ya.V. Electrical conductivity peculiarities of SrTiO3-ZrO2 ceramic system. Ceramics International. 2016;42:5245–5249.
Abe Y., Nishizaki S., Muroi T., Kato Y., Hench L.L. Conversion of gypsum into a superprotonic conductor. Materials Research Innovations. 2006;10:93–109.
Nikulin I., Nikulicheva T., Vyazmin V., Ivanov O., Anosov N., Telpova O. Effect of high-temperature treatment with orthophosphoric acid on the phase composition, elemental composition, microstructure and electrical properties of calcium sulfate hemihydrate. Journal of Solid State Chemistry. 2026;353:125656.
Simic M., Jeoti V., Stojanovic G.M. Parameter extraction of the Cole-impedance model for in-situ monitoring of electrochemical sources. Journal of Energy Storage. 2024;77:109895.
References
Pekhotikov V.A., Smelkov G.I., Nazarov A.A., Gruzinova O.I. Analysis of regulatory requirements in the field of fire safety of lithium-ion batteries. Current issues of fire safety. 2020:487–493 (In Russ.).
Lei C., Simpson M.F., Virkar A.V. Investigation of ion and electron conduction in the mixed ionic-electronic conductor-La-Sr-Co-Fe-oxide (LSCF) using alternating current (AC) and direct current (DC) techniques. Journal of the Electrochemical Society. 2022;169:014506.
Ghosh S., Majhi J., Sharma S., Priya K., Bandyopadhyay A. A review on the development of electron and ion conductive polymer hydrogels and their composites for flexible and smart supercapacitors. Journal of Energy Storage. 2023;74(B):109423.
Liu H.M., Saikia D., Wu C.G., Fang J., Kao H.M. Solid polymer electrolytes based on coupling of polyetheramine and organosilane for applications in electrochromic devices. Solid State Ionics. 2017;303:144–153.
Uvarov N.F., Ponomareva V.G., Lavrova G.V. Composite solid electrolytes Electrochemistry. 2010;46;№7:772–784 (In Russ.).
Guseynov R.M., Gadzhiev S.M. Methods of Activation of Solid Electrolytes. News of Higher Educational Institutions. Series: Chemistry and Chemical Technology. 2009;52;№11:3–6 (In Russ.).
Wu Y., Ao X., Wang Y., Liu Y., Zhao S., Yang X., Zhou N. Innovative doping strategies for Li2ZrCl 6 solid electrolytes: A first-principles approach. Journal of Energy Storage. 2025;107:115017.
Kosir J., Mousavihashemi S., Suominen M., Kobets A., Wilson B.P., Rautama E.-L., Kallio T. Supervalent doping and its effect on the thermal, structural and electrochemical properties of Li7La3Zr2O12 solid electrolytes. Advanced Materials. 2024;5:5260–5274.
Ali A.A.A., Acharya S., Bhongale K., Shirbhate S., Kulkarni S., Joshi S. Investigation of Sr doping effect on oxygen ion de-localization in Gd2Ti2O7 pyrochlore system and its influence on charge relaxation dynamics and ionic conductivity: as electrolyte for IT-SOFCs. Ionics. 2024;30:7293–7310.
Gupta M., Shirbhate S., Ojha P., Acharya S. Processing and conductivity behavior of La, Sm, Fe singly and doubly doped ceria: As electrolytes for IT-SOFCs. Solid State Ionics. 2018;320:199–209.
Nguyen M.H., Park S. Synergetic effect of Li-ion concentration and triple doping on ionic conductivity of Li7La3Zr2O12 solid electrolyte. Nanomaterials. 2022;12:2946.
Yang T., Li Y., Wu W., Cao Z., He W., Gao Y., Liu J., Li G. The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic. Ceramics International. 2018;44:1538.
Dashjav E., Ma Q., Xu Q., Tsai C.-L., Giarola M., Mariotto G., Tietz F. The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates. Solid State Ionics. 2018;321:83–90.
Ivanov O.N., Trusova Ya.V. Electrical conductivity peculiarities of SrTiO3-ZrO2 ceramic system. Ceramics International. 2016;42:5245–5249.
Abe Y., Nishizaki S., Muroi T., Kato Y., Hench L.L. Conversion of gypsum into a superprotonic conductor. Materials Research Innovations. 2006;10:93–109.
Nikulin I., Nikulicheva T., Vyazmin V., Ivanov O., Anosov N., Telpova O. Effect of high-temperature treatment with orthophosphoric acid on the phase composition, elemental composition, microstructure and electrical properties of calcium sulfate hemihydrate. Journal of Solid State Chemistry. 2026;353:125656.
Simic M., Jeoti V., Stojanovic G.M. Parameter extraction of the Cole-impedance model for in-situ monitoring of electrochemical sources. Journal of Energy Storage. 2024;77:109895.
Просмотров аннотации: 0
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2025 Прикладная математика & Физика

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
