MULTIPOTENT SETS IN UNIFORM COMMUTATIVE MONOIDS AND BINARY GOLDBACH PROBLEM
DOI:
https://doi.org/10.18413/2687-0959-2020-52-3-73–184Keywords:
commutativity, monoid, multipotent set, uniformity, prime, cycleAbstract
The concept of k-potent sets in monoids. Their simple properties are found. The class of uniform monoids with generated elements is selected. The simplest necessary conditions are found in order the fixed set in such monoids is the :-potent one. It is proved that each commutative uniform monoid with the system of generated elements is isomorphic to the monoid¸ with the correspond label set. For such monoids the necessary and sufficient conditions of
the k-potentiality of sets in it are proved. It is proposed the application of such a result to the analysis of the so-called binary Goldbach problem in additive number theory.
Downloads
References
Bourbaki N. 1959. ´El´ements de math´ematique. Premi´ere partie, Les structures fondamentales de l’analyse,
Livre II. Algebre. – Paris: Hermann & C, ´Editeurs, 218 p.
Chudakov N. G. 1938. About Goldbach’s problem. Uspekhi matematicheskikh nauk. 4: 14–33.
Correspondance mathematique et physique de quelques celebres geometres du XVIII-eme siecle (Band 1).
St.-Petersbourg, 125—129.
Dickson L. E. 2005. Goldbach’s Empirical Theorem: Every Integer is a Sum of Two Primes. In History of
the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, 421-424.
Estermann T. 1938. On Goldbach’s problem: proof that almost all even positive integers are sums of two
primes. Proc. London Math. Soc. 2(44): 307–314. doi:10.1112/plms/s2-44.4.307.
Guy R. K. 1994. Goldbach’s Conjecture in Unsolved Problems in Number Theory, 2nd ed. New York:
Springer-Verlag, 105-107.
Guy R. K. 2004. Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag.
Hardy, G. H. 1999. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New
York: Chelsea.
Montgomery H. L., Vaughan R. C. 1975. The exceptional set in Goldbach’s problem // Acta Arithmetica.
: 353–370. doi:10.4064/aa-27-1-353-370.
Pogorzelski H. A. 1977. Goldbach Conjecture. J. reine angew. Math. 292: 1–12.
Prahar K. Primzahlverteilung. Die Grundlehren der Mathematischen Wissenschaften, B. 91.— Berlin:
Springer-Verlag, 1957.— 508 p.
Ramar´e O. 1995. OnˇSnirel’man’s constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22(4): 645–706.
Shanks D. 1985. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, 30-31 and
Schnirelmann L. G. 1933. ¨Uber additive Eigenschaften von Zahlen. Mathematische Annalen. 107: 649–690.
Wang Y. 1984. Goldbach Conjecture. Singapore: World Scientific.
Waring E. 1770. Meditationes algebraicae. Cambridge.
Woon M. S. C. On Partitions of Goldbach’s Conjecture / 4 Oct 2000. https://arxiv.org/
abs/math.GM/0010027.
Abstract views: 176
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2020 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.