Localized and Local Derivatives of Fractional Order of Functions with a Given Modulus of Continuity

Authors

DOI:

https://doi.org/10.52575/2687-0959-2024-56-4-296-313

Keywords:

Localized Fractional Derivative, Local Fractional Derivative, Modulus of Continuity of a function, Isomorphism

Abstract

The article considers localized derivatives of the Riemann – Liouville, Marchaud type and localized integrals of the Riemann – Liouville type of functions with a given modulus of continuity. For the localized integral, a left inverse operator is introduced and a theorem on isomorphism in Holder spaces is proved. Conditions are obtained that connect the modulus of continuity of a function, the boundedness of the Wiener p-variation and the fulfillment of the Holder condition. The possibility of representing a Holder function as a difference of two almost increasing Holder functions is proved.

Downloads

Download data is not yet available.

Author Biography

Alexander P. Grinko, Baranovichi State University

Candidate of Physical and Mathematical Sciences, Assosiate Professor, Assosiate Professor of the Department of Information Technology and Physical and Mathematical Disciplines, Baranovichi State University,
Baranovichi, Belarus
E-mail: grinko111111@gmail.com
ORCID: 0009-0008-8355-6499

References

Grinko A.P. Localized derivatives in spaces of functions representable by localized fractional integrals. Integral Transforms and Special Functions. 2019;30(10):817-832.

Grinko A.P. Generalized Abel type integral equations with localized fractional integrals and derivatives. Integral Transforms and Special Functions. 2018;29(6):489-504.

Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Мн.; Наука и Техника; 1987. 687c.

Chistyakov V.V. and Galkin O.E. On Maps of Bounded p-Variation with p > 1 . Positivity. 1998;2:19-45.

Mejia O., Merentes N., Sanchez JL. The Space of Bounded p(·)-Variation in Wiener’s Sense with Variable Exponent. Advances in Pure Mathematics. 2015;5(11):703–716.

Павлов Д.А. Конструктивное описание гёльдеровых классов на компактах в R3. Записки научных семинаров ПОМИ. 2020;491:119–144.

Grinko A.P. Composition properties of operators of local fractional integro-differentiation calculated in various points. Trudy institute of mathemat. NAN Belarus. Minsk;2009;17(1):41-50. (In Russian)

Grinko А.P. Compositions of localized fractional derivatives and integrals of a different degree of localization. Integral Transforms and Special Functions. 2022;33(8):623-636.

Мусхелишвили Н.И. Сингулярные интегральные уравнения. - М.: Наука; 1968. 511 с.

Castillo R., Merentes N. and Rafeiro H. Bounded Variation Spaces with p-Variable. Mediterranean Journal of Mathematics. 2014;11: 1069–1079.


Abstract views: 0

##submission.share##

Published

2024-12-30

How to Cite

Grinko, A. P. (2024). Localized and Local Derivatives of Fractional Order of Functions with a Given Modulus of Continuity. Applied Mathematics & Physics, 56(4), 296-313. https://doi.org/10.52575/2687-0959-2024-56-4-296-313

Issue

Section

Mathematics