Localized and Local Derivatives of Fractional Order of Functions with a Given Modulus of Continuity
DOI:
https://doi.org/10.52575/2687-0959-2024-56-4-296-313Keywords:
Localized Fractional Derivative, Local Fractional Derivative, Modulus of Continuity of a function, IsomorphismAbstract
The article considers localized derivatives of the Riemann – Liouville, Marchaud type and localized integrals of the Riemann – Liouville type of functions with a given modulus of continuity. For the localized integral, a left inverse operator is introduced and a theorem on isomorphism in Holder spaces is proved. Conditions are obtained that connect the modulus of continuity of a function, the boundedness of the Wiener p-variation and the fulfillment of the Holder condition. The possibility of representing a Holder function as a difference of two almost increasing Holder functions is proved.
Downloads
References
Grinko A.P. Localized derivatives in spaces of functions representable by localized fractional integrals. Integral Transforms and Special Functions. 2019;30(10):817-832.
Grinko A.P. Generalized Abel type integral equations with localized fractional integrals and derivatives. Integral Transforms and Special Functions. 2018;29(6):489-504.
Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Мн.; Наука и Техника; 1987. 687c.
Chistyakov V.V. and Galkin O.E. On Maps of Bounded p-Variation with p > 1 . Positivity. 1998;2:19-45.
Mejia O., Merentes N., Sanchez JL. The Space of Bounded p(·)-Variation in Wiener’s Sense with Variable Exponent. Advances in Pure Mathematics. 2015;5(11):703–716.
Павлов Д.А. Конструктивное описание гёльдеровых классов на компактах в R3. Записки научных семинаров ПОМИ. 2020;491:119–144.
Grinko A.P. Composition properties of operators of local fractional integro-differentiation calculated in various points. Trudy institute of mathemat. NAN Belarus. Minsk;2009;17(1):41-50. (In Russian)
Grinko А.P. Compositions of localized fractional derivatives and integrals of a different degree of localization. Integral Transforms and Special Functions. 2022;33(8):623-636.
Мусхелишвили Н.И. Сингулярные интегральные уравнения. - М.: Наука; 1968. 511 с.
Castillo R., Merentes N. and Rafeiro H. Bounded Variation Spaces with p-Variable. Mediterranean Journal of Mathematics. 2014;11: 1069–1079.
Abstract views: 0
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2024 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.